Mercurial > hg > Members > kono > Proof > category
changeset 425:98811e927d4a
define MA and I
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 24 Mar 2016 14:49:49 +0900 |
parents | 4329525f5085 |
children | 1290d6876129 |
files | limit-to.agda |
diffstat | 1 files changed, 11 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Thu Mar 24 14:12:53 2016 +0900 +++ b/limit-to.agda Thu Mar 24 14:49:49 2016 +0900 @@ -386,14 +386,14 @@ open Limit -I : {c₁ c₂ ℓ : Level} -> Category c₁ c₂ c₂ -I {c₁} {c₂} {ℓ} = TwoCat {c₁} {c₂} {ℓ} -MA : {c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } -> Category c₁ (ℓ ⊔ c₂) (ℓ ⊔ c₂) -MA {c₁} {c₂} {ℓ} {A} = MaybeCat A +I' : {c₁ c₂ ℓ : Level} -> Category c₁ c₂ c₂ +I' {c₁} {c₂} {ℓ} = TwoCat {c₁} {c₂} {ℓ} +MA' : {c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } -> Category c₁ (ℓ ⊔ c₂) (ℓ ⊔ c₂) +MA' {c₁} {c₂} {ℓ} {A} = MaybeCat A lim-to-equ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) - (lim : ( Γ : Functor (I {c₁} {c₂} {ℓ}) (MA {c₁} {c₂} {ℓ} {A}) ) → {a0 : Obj A } - {u : NTrans I MA ( K MA I a0 ) Γ } → Limit MA I Γ a0 u ) -- completeness + (lim : ( Γ : Functor (I' {c₁} {c₂} {ℓ}) (MA' {c₁} {c₂} {ℓ} {A}) ) → {a0 : Obj A } + {u : NTrans I' MA' ( K MA' I' a0 ) Γ } → Limit MA' I' Γ a0 u ) -- completeness → {a b c : Obj A} (f g : Hom A a b ) → (e : Hom A c a ) → (fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] ) → Equalizer A e f g lim-to-equ {c₁} {c₂} {ℓ } A lim {a} {b} {c} f g e fe=ge = record { @@ -402,10 +402,14 @@ ; ek=h = λ {d} {h} {fh=gh} → ek=h d h fh=gh ; uniqueness = λ {d} {h} {fh=gh} {k'} → uniquness d h fh=gh k' } where + MA = MA' {c₁} {c₂} {ℓ} {A} + I = I' {c₁} {c₂} {ℓ} + mf : Hom MA a b mf = record { hom = just f } + mg : Hom MA a b mg = record { hom = just g } Γ = indexFunctor {c₁} {c₂} {ℓ} A a b f g - nmap : (x : Obj (I {c₁} {c₂} {ℓ}) ) ( d : Obj (MA {c₁} {c₂} {ℓ} {A}) ) (h : Hom MA d a ) -> Hom MA (FObj (K MA I d) x) (FObj Γ x) + nmap : (x : Obj I ) ( d : Obj (MA) ) (h : Hom MA d a ) -> Hom MA (FObj (K MA I d) x) (FObj Γ x) nmap x d h = {!!} commute1 : {x y : Obj I} {f' : Hom I x y} (d : Obj MA) (h : Hom MA d a ) -> MA [ MA [ mf o h ] ≈ MA [ mg o h ] ] → MA [ MA [ FMap Γ f' o nmap x d h ] ≈ MA [ nmap y d h o FMap (K MA I d) f' ] ]