Mercurial > hg > Members > kono > Proof > category
changeset 905:47a0a9f2eee9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 01 May 2020 17:08:23 +0900 |
parents | 3e164b00155f |
children | 91b8b7fb64eb |
files | CCCGraph.agda |
diffstat | 1 files changed, 19 insertions(+), 24 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Fri May 01 11:10:34 2020 +0900 +++ b/CCCGraph.agda Fri May 01 17:08:23 2020 +0900 @@ -209,37 +209,32 @@ -- Functor from Positive Logic to Sets -- - data SObj : Set (c₁ ⊔ c₂ ⊔ ℓ) - data SArrow : (a b : SObj) → Set (c₁ ⊔ c₂ ⊔ ℓ) - data SObj where - satom : (vertex G) → SObj - stop : SObj - spair : SObj → SObj → SObj - sfunc : SObj → SObj → SObj - data SArrow where - seq : {a b : vertex G} → graphtocat.Chain G a b → SArrow (satom a) (satom b) - top : {a : SObj } → SArrow a stop - pair : {a b c : SObj } → SArrow a b → SArrow a c → SArrow a (spair b c ) - func : {a b c : SObj } → SArrow b c → SArrow a (sfunc b c) + data SArrow : (a b : Objs) → Set (c₁ ⊔ c₂ ⊔ ℓ) where + seq : {a b : vertex G} → graphtocat.Chain G a b → SArrow (atom a) (atom b) + top : {a : Objs } → SArrow a ⊤ + pair : {a b c : Objs } → SArrow a b → SArrow a c → SArrow a (b ∧ c ) + func : {a b c : Objs } → SArrow b c → SArrow a ( c <= b ) + sid : {a : Objs } → SArrow a a - sobj : Objs → SObj - sobj (atom x) = satom x - sobj ⊤ = stop - sobj (x ∧ y) = spair (sobj x) (sobj y) - sobj (b <= a) = sfunc (sobj a) (sobj b) - - smap : { a b : Objs } → Hom PL a b → SArrow (sobj a) (sobj b) - samap : { a b c : Objs } → Arrow b c → SArrow (sobj a) (sobj b) → SArrow (sobj a) (sobj c) + smap : { a b : Objs } → Hom PL a b → SArrow (a) (b) + samap : { a b c : Objs } → Arrow b c → SArrow (a) (b) → SArrow (a) (c) + samap {atom a} (arrow x) sid = {!!} samap {atom a} (arrow x) (seq y) = seq ( graphtocat.next x y ) samap π (pair f g) = f samap π' (pair f g) = g samap ε (pair (func f) g) = {!!} - samap (f *) x = ? + samap (f *) x = func {!!} where + f1 : {!!} + f1 = smap f + samap ε (pair y y₁) = {!!} + samap π sid = ? + samap π' sid = ? + samap ε sid = ? smap (id (atom x)) = seq (graphtocat.id x) smap (id ⊤) = top - smap (id (a ∧ b)) = {!!} -- pair (smap (id a)) (smap (id b)) - smap (id (b <= a)) = {!!} - smap (○ a) = top {sobj a} + smap (id (a ∧ b)) = sid -- pair (smap (id a)) (smap (id b)) + smap (id (b <= a)) = sid + smap (○ a) = top {a} smap < f , g > = pair ( smap f ) (smap g ) smap (iv f g ) = samap f ( smap g )