Mercurial > hg > Members > kono > Proof > category
changeset 906:91b8b7fb64eb
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 01 May 2020 17:49:45 +0900 |
parents | 47a0a9f2eee9 |
children | 549933e67978 |
files | CCCGraph.agda |
diffstat | 1 files changed, 12 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Fri May 01 17:08:23 2020 +0900 +++ b/CCCGraph.agda Fri May 01 17:49:45 2020 +0900 @@ -227,9 +227,9 @@ f1 : {!!} f1 = smap f samap ε (pair y y₁) = {!!} - samap π sid = ? - samap π' sid = ? - samap ε sid = ? + samap π sid = {!!} + samap π' sid = {!!} + samap ε sid = {!!} smap (id (atom x)) = seq (graphtocat.id x) smap (id ⊤) = top smap (id (a ∧ b)) = sid -- pair (smap (id a)) (smap (id b)) @@ -264,6 +264,15 @@ fmap < f , g > x = ( fmap f x , fmap g x ) fmap (iv x f) a = amap x ( fmap f a ) + _==_ : { a : Objs } → (f g : fobj a ) → Set ℓ + _==_ {atom x} f g = {!!} + _==_ {⊤} OneObj OneObj = OneObj ≡ OneObj + _==_ {a ∧ b} (f , g) (h , i) = ( f == h ) /\ ( g == i ) + _==_ {b <= a} f g = {!!} -- λ (x : fobj a) → ? -- _≑_ f g {x} + + _≑_ : { a b : Objs } → (f g : fobj a → fobj b ) → {x : fobj a} → Set ℓ + _≑_ {a} {b} f g {x} = f x == g x + -- CS is a map from Positive logic to Sets -- Sets is CCC, so we have a cartesian closed category generated by a graph -- as a sub category of Sets