Mercurial > hg > Members > kono > Proof > category
changeset 306:92475fe5f59e
Small Full Subcategory (underconstruction)
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jan 2014 10:36:11 +0900 |
parents | 211f6bec9b4a |
children | 9872bddec072 |
files | freyd.agda |
diffstat | 1 files changed, 14 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd.agda Sun Jan 05 09:52:13 2014 +0900 +++ b/freyd.agda Sun Jan 05 10:36:11 2014 +0900 @@ -3,19 +3,23 @@ open import Category.Sets module freyd {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) - (C : Category zero zero zero ) where open import Relation.Binary.Core --- C is locally small -postulate ≈→≡ : {a b : Obj C } { x y : Hom C a b } → (x≈y : C [ x ≈ y ]) → x ≡ y - -infix 4 _⊆_ _⊇_ +-- C is small full subcategory of A -_⊆_ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _ -P ⊆ Q = ∀ {x : P} → {y : Q } → x ≡ y +record SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( f : Obj A → Obj A ) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where + ObjC : Set c₁ + ObjC = Category.Category.Obj A + C : Category c₁ c₂ ℓ + C = record { Obj = ObjC + ; Hom = Category.Category.Hom A + ; _o_ = Category.Category._o_ A + ; _≈_ = Category.Category._≈_ A + ; Id = Category.Category.Id A + ; isCategory = Category.isCategory A + } + field + ≈→≡ : {a b : Obj C } { x y : Hom C a b } → (x≈y : C [ x ≈ y ]) → x ≡ y -_⊇_ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _ -Q ⊇ P = ∀ {x : P} → {y : Q } → x ≡ y -