Mercurial > hg > Members > kono > Proof > category
changeset 307:9872bddec072
small full subcategory done.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jan 2014 18:51:44 +0900 |
parents | 92475fe5f59e |
children | 7f00cd09274c |
files | freyd.agda |
diffstat | 1 files changed, 9 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd.agda Sun Jan 05 10:36:11 2014 +0900 +++ b/freyd.agda Sun Jan 05 18:51:44 2014 +0900 @@ -5,21 +5,18 @@ module freyd {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) where +open import cat-utility open import Relation.Binary.Core +open Functor -- C is small full subcategory of A -record SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( f : Obj A → Obj A ) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where - ObjC : Set c₁ - ObjC = Category.Category.Obj A - C : Category c₁ c₂ ℓ - C = record { Obj = ObjC - ; Hom = Category.Category.Hom A - ; _o_ = Category.Category._o_ A - ; _≈_ = Category.Category._≈_ A - ; Id = Category.Category.Id A - ; isCategory = Category.isCategory A - } +record SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) + (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) + : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field - ≈→≡ : {a b : Obj C } { x y : Hom C a b } → (x≈y : C [ x ≈ y ]) → x ≡ y + ≈→≡ : {a b : Obj A } → { x y : Hom A (FObj F a) (FObj F b) } → + (x≈y : A [ FMap F x ≈ FMap F y ]) → FMap F x ≡ FMap F y -- co-comain of FMap is local small + full→ : { a b : Obj A } { x : Hom A (FObj F a) (FObj F b) } → A [ FMap F ( FMap← x ) ≈ x ] + full← : { a b : Obj A } { x : Hom A a b } → A [ FMap← ( FMap F x ) ≈ x ]