Mercurial > hg > Members > kono > Proof > category
changeset 966:cb970ab7c32b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Feb 2021 11:13:31 +0900 |
parents | 396bf884f5e7 |
children | 472bcadfd216 |
files | src/bi-ccc.agda |
diffstat | 1 files changed, 15 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bi-ccc.agda Thu Feb 25 02:01:37 2021 +0900 +++ b/src/bi-ccc.agda Thu Feb 25 11:13:31 2021 +0900 @@ -40,10 +40,24 @@ open ≈-Reasoning A open CCC.CCC C open BICCC B + bi-hom← : {a c : Obj A } → Hom A (a ∧ ⊥) c → Hom A ⊥ (c <= a ) + bi-hom← f = (f o < π' , π > ) * + bi-hom→ : {a c : Obj A } → Hom A ⊥ (c <= a ) → Hom A (a ∧ ⊥) c + bi-hom→ f = ε o ( < π' , π > o < π , f o π' > ) + bi-hom-iso : {a : Obj A } → {f : Hom A (a ∧ ⊥) (a ∧ ⊥)} → A [ bi-hom→ (bi-hom← f ) ≈ f ] + bi-hom-iso = {!!} + bi-hom-cong : {a c : Obj A } → {f g : Hom A ⊥ (c <= a )} → A [ f ≈ g ] → A [ bi-hom→ f ≈ bi-hom→ g ] + bi-hom-cong = {!!} bi-ccc-0 : A [ A [ □ ( a ∧ ⊥ ) o π' ] ≈ id1 A ( a ∧ ⊥ ) ] bi-ccc-0 = begin □ ( a ∧ ⊥ ) o π' - ≈⟨ {!!} ⟩ + ≈↑⟨ bi-hom-iso ⟩ + bi-hom→ (bi-hom← ( □ ( a ∧ ⊥ ) o π' )) + ≈⟨ bi-hom-cong (IsBICCC.e5 isBICCC ) ⟩ + bi-hom→ ( □ ( ( a ∧ ⊥ ) <= a) ) + ≈↑⟨ bi-hom-cong (IsBICCC.e5 isBICCC ) ⟩ + bi-hom→ (bi-hom← (id1 A ( a ∧ ⊥ ))) + ≈⟨ bi-hom-iso ⟩ id1 A ( a ∧ ⊥ ) ∎ bi-ccc-1 : A [ A [ □ a o f ] ≈ id1 A a ]