Mercurial > hg > Members > kono > Proof > galois
comparison sym4.agda @ 88:405c1f727ffe
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 28 Aug 2020 11:05:45 +0900 |
parents | sym3.agda@32004c9a70b1 |
children | d3da6e2c0d90 |
comparison
equal
deleted
inserted
replaced
87:c68956f6c3ad | 88:405c1f727ffe |
---|---|
1 open import Level hiding ( suc ; zero ) | |
2 open import Algebra | |
3 module sym4 where | |
4 | |
5 open import Symmetric | |
6 open import Data.Unit | |
7 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) | |
8 open import Function | |
9 open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) | |
10 open import Relation.Nullary | |
11 open import Data.Empty | |
12 open import Data.Product | |
13 | |
14 open import Gutil | |
15 open import Putil | |
16 open import Solvable using (solvable) | |
17 open import Relation.Binary.PropositionalEquality hiding ( [_] ) | |
18 | |
19 open import Data.Fin | |
20 open import Data.Fin.Permutation hiding (_∘ₚ_) | |
21 | |
22 infixr 200 _∘ₚ_ | |
23 _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ | |
24 | |
25 sym4solvable : solvable (Symmetric 4) | |
26 solvable.dervied-length sym4solvable = 3 | |
27 solvable.end sym4solvable x d = solved1 x {!!} where | |
28 | |
29 open import Data.List using ( List ; [] ; _∷_ ) | |
30 | |
31 open Solvable (Symmetric 4) | |
32 -- open Group (Symmetric 2) using (_⁻¹) | |
33 | |
34 p0 : FL→perm ((# 0) :: ((# 0) :: ((# 0) :: ((# 0 ) :: f0)))) =p= pid | |
35 p0 = {!!} -- record { peq = p00 } where | |
36 | |
37 open _=p=_ | |
38 | |
39 -- Klien | |
40 -- | |
41 -- 1 (1,2),(3,4) (1,3),(2,4) (1,4),(2,3) | |
42 -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] , 1 ∷ 0 ∷ 3 ∷ 2 ∷ [] , 2 ∷ 3 ∷ 0 ∷ 1 ∷ [] , 3 ∷ 2 ∷ 1 ∷ 0 ∷ [] , | |
43 | |
44 | |
45 data Klein : (x : Permutation 4 4 ) → Set where | |
46 kid : Klein pid | |
47 ka : Klein (pswap (pswap pid)) | |
48 kb : Klein (pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 ) ) | |
49 kc : Klein (pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2})) | |
50 | |
51 a0 = pid {4} | |
52 a1 = pswap (pswap (pid {0})) | |
53 a2 = pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 ) | |
54 a3 = pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2}) | |
55 | |
56 -- 1 0 | |
57 -- 2 1 0 | |
58 -- 3 2 1 0 | |
59 | |
60 k1 : { x : Permutation 4 4 } → Klein x → List ℕ | |
61 k1 {x} kid = plist x | |
62 k1 {x} ka = plist x | |
63 k1 {x} kb = plist x | |
64 k1 {x} kc = plist x | |
65 | |
66 k2 = k1 kid ∷ k1 ka ∷ k1 kb ∷ k1 kc ∷ [] | |
67 k3 = plist (a1 ∘ₚ a2 ) ∷ plist (a1 ∘ₚ a3) ∷ plist (a2 ∘ₚ a1 ) ∷ [] | |
68 | |
69 solved1 : (x : Permutation 4 4) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid | |
70 solved1 = {!!} |