comparison sym4.agda @ 88:405c1f727ffe

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 28 Aug 2020 11:05:45 +0900
parents sym3.agda@32004c9a70b1
children d3da6e2c0d90
comparison
equal deleted inserted replaced
87:c68956f6c3ad 88:405c1f727ffe
1 open import Level hiding ( suc ; zero )
2 open import Algebra
3 module sym4 where
4
5 open import Symmetric
6 open import Data.Unit
7 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
8 open import Function
9 open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero)
10 open import Relation.Nullary
11 open import Data.Empty
12 open import Data.Product
13
14 open import Gutil
15 open import Putil
16 open import Solvable using (solvable)
17 open import Relation.Binary.PropositionalEquality hiding ( [_] )
18
19 open import Data.Fin
20 open import Data.Fin.Permutation hiding (_∘ₚ_)
21
22 infixr 200 _∘ₚ_
23 _∘ₚ_ = Data.Fin.Permutation._∘ₚ_
24
25 sym4solvable : solvable (Symmetric 4)
26 solvable.dervied-length sym4solvable = 3
27 solvable.end sym4solvable x d = solved1 x {!!} where
28
29 open import Data.List using ( List ; [] ; _∷_ )
30
31 open Solvable (Symmetric 4)
32 -- open Group (Symmetric 2) using (_⁻¹)
33
34 p0 : FL→perm ((# 0) :: ((# 0) :: ((# 0) :: ((# 0 ) :: f0)))) =p= pid
35 p0 = {!!} -- record { peq = p00 } where
36
37 open _=p=_
38
39 -- Klien
40 --
41 -- 1 (1,2),(3,4) (1,3),(2,4) (1,4),(2,3)
42 -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] , 1 ∷ 0 ∷ 3 ∷ 2 ∷ [] , 2 ∷ 3 ∷ 0 ∷ 1 ∷ [] , 3 ∷ 2 ∷ 1 ∷ 0 ∷ [] ,
43
44
45 data Klein : (x : Permutation 4 4 ) → Set where
46 kid : Klein pid
47 ka : Klein (pswap (pswap pid))
48 kb : Klein (pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 ) )
49 kc : Klein (pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2}))
50
51 a0 = pid {4}
52 a1 = pswap (pswap (pid {0}))
53 a2 = pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 )
54 a3 = pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2})
55
56 -- 1 0
57 -- 2 1 0
58 -- 3 2 1 0
59
60 k1 : { x : Permutation 4 4 } → Klein x → List ℕ
61 k1 {x} kid = plist x
62 k1 {x} ka = plist x
63 k1 {x} kb = plist x
64 k1 {x} kc = plist x
65
66 k2 = k1 kid ∷ k1 ka ∷ k1 kb ∷ k1 kc ∷ []
67 k3 = plist (a1 ∘ₚ a2 ) ∷ plist (a1 ∘ₚ a3) ∷ plist (a2 ∘ₚ a1 ) ∷ []
68
69 solved1 : (x : Permutation 4 4) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid
70 solved1 = {!!}