Mercurial > hg > Members > kono > Proof > galois
diff sym4.agda @ 88:405c1f727ffe
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 28 Aug 2020 11:05:45 +0900 |
parents | sym3.agda@32004c9a70b1 |
children | d3da6e2c0d90 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/sym4.agda Fri Aug 28 11:05:45 2020 +0900 @@ -0,0 +1,70 @@ +open import Level hiding ( suc ; zero ) +open import Algebra +module sym4 where + +open import Symmetric +open import Data.Unit +open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) +open import Function +open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) +open import Relation.Nullary +open import Data.Empty +open import Data.Product + +open import Gutil +open import Putil +open import Solvable using (solvable) +open import Relation.Binary.PropositionalEquality hiding ( [_] ) + +open import Data.Fin +open import Data.Fin.Permutation hiding (_∘ₚ_) + +infixr 200 _∘ₚ_ +_∘ₚ_ = Data.Fin.Permutation._∘ₚ_ + +sym4solvable : solvable (Symmetric 4) +solvable.dervied-length sym4solvable = 3 +solvable.end sym4solvable x d = solved1 x {!!} where + + open import Data.List using ( List ; [] ; _∷_ ) + + open Solvable (Symmetric 4) + -- open Group (Symmetric 2) using (_⁻¹) + + p0 : FL→perm ((# 0) :: ((# 0) :: ((# 0) :: ((# 0 ) :: f0)))) =p= pid + p0 = {!!} -- record { peq = p00 } where + + open _=p=_ + + -- Klien + -- + -- 1 (1,2),(3,4) (1,3),(2,4) (1,4),(2,3) + -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] , 1 ∷ 0 ∷ 3 ∷ 2 ∷ [] , 2 ∷ 3 ∷ 0 ∷ 1 ∷ [] , 3 ∷ 2 ∷ 1 ∷ 0 ∷ [] , + + + data Klein : (x : Permutation 4 4 ) → Set where + kid : Klein pid + ka : Klein (pswap (pswap pid)) + kb : Klein (pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 ) ) + kc : Klein (pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2})) + + a0 = pid {4} + a1 = pswap (pswap (pid {0})) + a2 = pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 ) + a3 = pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2}) + + -- 1 0 + -- 2 1 0 + -- 3 2 1 0 + + k1 : { x : Permutation 4 4 } → Klein x → List ℕ + k1 {x} kid = plist x + k1 {x} ka = plist x + k1 {x} kb = plist x + k1 {x} kc = plist x + + k2 = k1 kid ∷ k1 ka ∷ k1 kb ∷ k1 kc ∷ [] + k3 = plist (a1 ∘ₚ a2 ) ∷ plist (a1 ∘ₚ a3) ∷ plist (a2 ∘ₚ a1 ) ∷ [] + + solved1 : (x : Permutation 4 4) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid + solved1 = {!!}