Mercurial > hg > Members > kono > Proof > galois
changeset 2:1b73893387c0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 16 Aug 2020 13:50:07 +0900 |
parents | 298dbf2b420d |
children | 6e77fefcbe41 |
files | PermAbel.agda |
diffstat | 1 files changed, 11 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/PermAbel.agda Sun Aug 16 11:32:13 2020 +0900 +++ b/PermAbel.agda Sun Aug 16 13:50:07 2020 +0900 @@ -63,11 +63,18 @@ ; inverse-of = record { left-inverse-of = λ x → inverseˡ P ; right-inverse-of = λ x → inverseʳ P } } Pp P = {!!} -lemma3 : {p : ℕ } {i j : Fin p} {y : Permutation p p } → i ≡ j → Inverse.to y Π.⟨$⟩ i ≡ Inverse.to y Π.⟨$⟩ j -lemma3 = {!!} +p-≡ : {p : ℕ } → (x y : Permutation p p ) → (_⟨$⟩ˡ_ x) ≡ (_⟨$⟩ˡ_ y) → (_⟨$⟩ʳ_ x ) ≡ (_⟨$⟩ʳ_ y ) → x ≡ y +p-≡ x y refl refl = lemma2 where + lemma3 : {p : ℕ } {i j : Fin p} {x y : Permutation p p } → i ≡ j + → (eq1 : Inverse.to x Π.⟨$⟩ i ≡ Inverse.to x Π.⟨$⟩ j ) + → (eq2 : Inverse.to y Π.⟨$⟩ i ≡ Inverse.to y Π.⟨$⟩ j ) → eq1 ≅ eq2 + lemma3 refl refl refl = ? + lemma4 : {p : ℕ } {i j : Fin p} {x y : Permutation p p } → i ≡ j → (p q : Inverse.from y Π.⟨$⟩ i ≡ Inverse.from y Π.⟨$⟩ j ) → p ≡ q + lemma4 refl refl refl = refl + lemma2 : record { to = record { _⟨$⟩_ = Π._⟨$⟩_ (Inverse.to y) ; cong = {!!} } ; + from = record { _⟨$⟩_ = Π._⟨$⟩_ (Inverse.from y) ; cong = {!!} } ; inverse-of = Inverse.Inverse.inverse-of x } ≡ y + lemma2 = {!!} -p-≡ : {p : ℕ } → (x y : Permutation p p ) → (_⟨$⟩ˡ_ x) ≡ (_⟨$⟩ˡ_ y) → (_⟨$⟩ʳ_ x ) ≡ (_⟨$⟩ʳ_ y ) → x ≡ y -p-≡ _ _ refl refl = {!!} pgroup : ℕ → AbelianGroup Level.zero Level.zero pgroup p = record {