Mercurial > hg > Members > kono > Proof > galois
changeset 1:298dbf2b420d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 16 Aug 2020 11:32:13 +0900 |
parents | dc677bac3c54 |
children | 1b73893387c0 |
files | PermAbel.agda |
diffstat | 1 files changed, 14 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/PermAbel.agda Sun Aug 16 11:03:37 2020 +0900 +++ b/PermAbel.agda Sun Aug 16 11:32:13 2020 +0900 @@ -45,10 +45,6 @@ PPP1 : {p : ℕ } (P : Permutation p p ) (x : Fin p) → (_⟨$⟩ʳ_ P) ((_⟨$⟩ˡ_ P) x) ≡ x PPP1 P x = inverseʳ P -Pp : {p : ℕ } → (P : Permutation p p ) → P ≡ permutation (_⟨$⟩ʳ_ P ) (_⟨$⟩ˡ_ P ) - record { left-inverse-of = λ x → PPP0 P x ; right-inverse-of = λ x → PPP1 P x } -Pp P = {!!} - p-≅ : {p : ℕ } → {f0 g0 f1 g1 : Fin p → Fin p } → f0 ≡ f1 → g0 ≡ g1 → {fg0 : (x : Fin p ) → f0 (g0 x) ≡ x } → {fg1 : (x : Fin p ) → f1 (g1 x) ≡ x } → {gf0 : (x : Fin p ) → g0 (f0 x) ≡ x } → {gf1 : (x : Fin p ) → g1 (f1 x) ≡ x } @@ -56,6 +52,20 @@ ≡ permutation f1 g1 record { left-inverse-of = gf1 ; right-inverse-of = fg1 } p-≅ refl refl HE.refl HE.refl = refl +p-≅' : {p : ℕ } → {f0 g0 f1 g1 : Fin p → Fin p } → f0 ≡ f1 → g0 ≡ g1 + → {fg0 : (x : Fin p ) → f0 (g0 x) ≡ x } → {fg1 : (x : Fin p ) → f1 (g1 x) ≡ x } + → {gf0 : (x : Fin p ) → g0 (f0 x) ≡ x } → {gf1 : (x : Fin p ) → g1 (f1 x) ≡ x } + → fg0 ≅ fg1 → gf0 ≅ gf1 → record { to = →-to-⟶ f0 ; from = →-to-⟶ g0 ; inverse-of = record { left-inverse-of = gf0 ; right-inverse-of = fg0 } } + ≡ record { to = →-to-⟶ f1 ; from = →-to-⟶ g1 ; inverse-of = record { left-inverse-of = gf1 ; right-inverse-of = fg1 } } +p-≅' refl refl HE.refl HE.refl = refl + +Pp : {p : ℕ } → (P : Permutation p p ) → P ≡ record { to = →-to-⟶ (_⟨$⟩ʳ_ P ) ; from = →-to-⟶ (_⟨$⟩ˡ_ P ) + ; inverse-of = record { left-inverse-of = λ x → inverseˡ P ; right-inverse-of = λ x → inverseʳ P } } +Pp P = {!!} + +lemma3 : {p : ℕ } {i j : Fin p} {y : Permutation p p } → i ≡ j → Inverse.to y Π.⟨$⟩ i ≡ Inverse.to y Π.⟨$⟩ j +lemma3 = {!!} + p-≡ : {p : ℕ } → (x y : Permutation p p ) → (_⟨$⟩ˡ_ x) ≡ (_⟨$⟩ˡ_ y) → (_⟨$⟩ʳ_ x ) ≡ (_⟨$⟩ʳ_ y ) → x ≡ y p-≡ _ _ refl refl = {!!}