Mercurial > hg > Members > kono > Proof > galois
changeset 0:dc677bac3c54
Permutation group
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 16 Aug 2020 11:03:37 +0900 |
parents | |
children | 298dbf2b420d |
files | PermAbel.agda |
diffstat | 1 files changed, 84 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/PermAbel.agda Sun Aug 16 11:03:37 2020 +0900 @@ -0,0 +1,84 @@ +module PermAbel where + +open import Level hiding ( suc ; zero ) +open import Algebra +open import Algebra.Structures +open import Data.Fin +open import Data.Fin.Permutation +open import Function hiding (id ; flip) +open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) +open import Function.LeftInverse using ( _LeftInverseOf_ ) +open import Function.Equality using (Π) +open import Data.Nat using (ℕ; suc; zero) +open import Relation.Binary.PropositionalEquality + +f1 : Fin 3 → Fin 3 +f1 zero = suc (suc zero) +f1 (suc zero) = zero +f1 (suc (suc zero)) = suc zero + +lemma1 : Permutation 3 3 +lemma1 = permutation f1 ( f1 ∘ f1 ) lemma2 where + lemma3 : (x : Fin 3 ) → f1 (f1 (f1 x)) ≡ x + lemma3 zero = refl + lemma3 (suc zero) = refl + lemma3 (suc (suc zero)) = refl + lemma2 : :→-to-Π (λ x → f1 (f1 x)) InverseOf :→-to-Π f1 + lemma2 = record { left-inverse-of = λ x → lemma3 x ; right-inverse-of = λ x → lemma3 x } + +fid : {p : ℕ } → Fin p → Fin p +fid x = x + +-- Data.Fin.Permutation.id +pid : {p : ℕ } → Permutation p p +pid = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl } + +-- Data.Fin.Permutation.flip +pinv : {p : ℕ } → Permutation p p → Permutation p p +pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P } + +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + +PPP0 : {p : ℕ } (P : Permutation p p ) (x : Fin p) → (_⟨$⟩ˡ_ P) ((_⟨$⟩ʳ_ P) x) ≡ x +PPP0 P x = inverseˡ P + +PPP1 : {p : ℕ } (P : Permutation p p ) (x : Fin p) → (_⟨$⟩ʳ_ P) ((_⟨$⟩ˡ_ P) x) ≡ x +PPP1 P x = inverseʳ P + +Pp : {p : ℕ } → (P : Permutation p p ) → P ≡ permutation (_⟨$⟩ʳ_ P ) (_⟨$⟩ˡ_ P ) + record { left-inverse-of = λ x → PPP0 P x ; right-inverse-of = λ x → PPP1 P x } +Pp P = {!!} + +p-≅ : {p : ℕ } → {f0 g0 f1 g1 : Fin p → Fin p } → f0 ≡ f1 → g0 ≡ g1 + → {fg0 : (x : Fin p ) → f0 (g0 x) ≡ x } → {fg1 : (x : Fin p ) → f1 (g1 x) ≡ x } + → {gf0 : (x : Fin p ) → g0 (f0 x) ≡ x } → {gf1 : (x : Fin p ) → g1 (f1 x) ≡ x } + → fg0 ≅ fg1 → gf0 ≅ gf1 → permutation f0 g0 record { left-inverse-of = gf0 ; right-inverse-of = fg0 } + ≡ permutation f1 g1 record { left-inverse-of = gf1 ; right-inverse-of = fg1 } +p-≅ refl refl HE.refl HE.refl = refl + +p-≡ : {p : ℕ } → (x y : Permutation p p ) → (_⟨$⟩ˡ_ x) ≡ (_⟨$⟩ˡ_ y) → (_⟨$⟩ʳ_ x ) ≡ (_⟨$⟩ʳ_ y ) → x ≡ y +p-≡ _ _ refl refl = {!!} + +pgroup : ℕ → AbelianGroup Level.zero Level.zero +pgroup p = record { + Carrier = Permutation p p + ; _≈_ = _≡_ + ; _∙_ = _∘ₚ_ + ; ε = pid + ; _⁻¹ = pinv + ; isAbelianGroup = record { isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { + isEquivalence = record {refl = refl ; trans = trans ; sym = sym} + ; ∙-cong = presp } + ; assoc = passoc } + ; identity = {!!} } + ; inverse = {!!} + ; ⁻¹-cong = {!!} + } ; comm = {!!} + } + } where + presp : {x y u v : Permutation p p } → x ≡ y → u ≡ v → (x ∘ₚ u) ≡ (y ∘ₚ v) + presp refl refl = refl + passoc : (x y z : Permutation p p) → ((x ∘ₚ y) ∘ₚ z) ≡ (x ∘ₚ (y ∘ₚ z)) + passoc x y z = p-≡ _ _ refl refl + +