Mercurial > hg > Members > kono > Proof > galois
changeset 285:515de7624a0c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 29 Jan 2023 13:09:54 +0900 (2023-01-29) |
parents | 69645d667f45 |
children | f257ab4afa51 |
files | src/FundamentalHomorphism.agda |
diffstat | 1 files changed, 21 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/FundamentalHomorphism.agda Sun Jan 29 11:40:29 2023 +0900 +++ b/src/FundamentalHomorphism.agda Sun Jan 29 13:09:54 2023 +0900 @@ -52,9 +52,8 @@ open GroupMorphisms -import Axiom.Extensionality.Propositional -postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m -open import Tactic.MonoidSolver using (solve; solve-macro) +-- import Axiom.Extensionality.Propositional +-- postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m record NormalSubGroup (A : Group c c ) : Set c where @@ -73,25 +72,21 @@ open Group A open NormalSubGroup N field - a : Group.Carrier A + a : Carrier aN=x : a ∙ ⟦ n ⟧ ≈ x record aN {A : Group c c } (N : NormalSubGroup A ) : Set c where + open Group A field - n : Group.Carrier A - is-an : (x : Group.Carrier A) → an N n x - -qid : {A : Group c c } (N : NormalSubGroup A ) → aN N -qid {A} N = record { n = ε ; is-an = λ x → record { a = x ; aN=x = ? } } where - open Group A - open NormalSubGroup N + n : Carrier + is-an : (x : Carrier) → an N n x _/_ : (A : Group c c ) (N : NormalSubGroup A ) → Group c c _/_ A N = record { Carrier = aN N ; _≈_ = λ f g → ⟦ n f ⟧ ≈ ⟦ n g ⟧ ; _∙_ = qadd - ; ε = qid N + ; ε = qid ; _⁻¹ = ? ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = record {refl = grefl ; trans = gtrans ; sym = gsym } @@ -119,10 +114,19 @@ x ⁻¹ ∙ (a (is-an f x) ∙ ( a (is-an g x) ∙ ⟦ n f ⟧) ∙ ⟦ n g ⟧) ≈⟨ ? ⟩ x ⁻¹ ∙ (a (is-an f x) ∙ ( ⟦ n f ⟧ ∙ a (is-an g x) ) ∙ ⟦ n g ⟧) ≈⟨ ? ⟩ x ⁻¹ ∙ ((a (is-an f x) ∙ ⟦ n f ⟧ ) ∙ ( a (is-an g x) ∙ ⟦ n g ⟧)) ≈⟨ ? ⟩ - x ⁻¹ ∙ ((a (is-an f x) ∙ ⟦ n f ⟧ ) ∙ ( a (is-an g x) ∙ ⟦ n g ⟧)) ≈⟨ ? ⟩ x ⁻¹ ∙ (x ∙ x) ≈⟨ ? ⟩ + (x ⁻¹ ∙ x ) ∙ x ≈⟨ ? ⟩ + ε ∙ x ≈⟨ ? ⟩ + x ∎ + qid : aN N + qid = record { n = ε ; is-an = λ x → record { a = x ; aN=x = qid1 } } where + qid1 : {x : Carrier } → x ∙ ⟦ ε ⟧ ≈ x + qid1 {x} = begin + x ∙ ⟦ ε ⟧ ≈⟨ ∙-cong grefl ε-homo ⟩ + x ∙ ε ≈⟨ proj₂ identity _ ⟩ x ∎ + -- K ⊂ ker(f) K⊆ker : (G H : Group c c) (K : NormalSubGroup G) (f : Group.Carrier G → Group.Carrier H ) → Set c K⊆ker G H K f = (x : Group.Carrier G ) → f ( ⟦ x ⟧ ) ≈ ε where @@ -171,6 +175,7 @@ ⟦ n (φ (inv-φ f) ) ⟧ ≈⟨ grefl ⟩ ⟦ n (φ (⟦ n f ⟧ ⁻¹) ) ⟧ ≈⟨ grefl ⟩ ⟦ factor ε (⟦ n f ⟧ ⁻¹) ⟧ ≈⟨ ? ⟩ + ε ∙ ⟦ factor ε (⟦ n f ⟧ ⁻¹) ⟧ ≈⟨ ? ⟩ ( ⟦ n f ⟧ ∙ ⟦ n f ⟧ ⁻¹) ∙ ⟦ factor ε (⟦ n f ⟧ ⁻¹) ⟧ ≈⟨ ? ⟩ ⟦ n f ⟧ ∙ ( ⟦ n f ⟧ ⁻¹ ∙ ⟦ factor ε (⟦ n f ⟧ ⁻¹) ⟧ ) ≈⟨ ∙-cong grefl (is-factor ε _ ) ⟩ ⟦ n f ⟧ ∙ ε ≈⟨ ? ⟩ @@ -182,8 +187,9 @@ gk00 : {x : Carrier } → ⟦ factor ε x ⟧ ⁻¹ ≈ x gk00 {x} = begin ⟦ factor ε x ⟧ ⁻¹ ≈⟨ ? ⟩ - ( x ⁻¹ ∙ ( x ∙ ⟦ factor ε x ⟧) ) ⁻¹ ≈⟨ ? ⟩ - ( x ⁻¹ ∙ ( x ∙ ⟦ factor ε x ⟧) ) ⁻¹ ≈⟨ ⁻¹-cong (∙-cong grefl (is-factor ε x)) ⟩ + (ε ∙ ⟦ factor ε x ⟧) ⁻¹ ≈⟨ ? ⟩ + ( ( x ⁻¹ ∙ x ) ∙ ⟦ factor ε x ⟧ ) ⁻¹ ≈⟨ ? ⟩ + ( x ⁻¹ ∙ ( x ∙ ⟦ factor ε x ⟧) ) ⁻¹ ≈⟨ ⁻¹-cong (∙-cong grefl (is-factor ε x)) ⟩ ( x ⁻¹ ∙ ε ) ⁻¹ ≈⟨ ? ⟩ ( x ⁻¹ ) ⁻¹ ≈⟨ ? ⟩ x ∎