Mercurial > hg > Members > kono > Proof > galois
changeset 286:f257ab4afa51
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 29 Jan 2023 16:08:09 +0900 |
parents | 515de7624a0c |
children | 1874c573682f |
files | src/FundamentalHomorphism.agda |
diffstat | 1 files changed, 46 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/FundamentalHomorphism.agda Sun Jan 29 13:09:54 2023 +0900 +++ b/src/FundamentalHomorphism.agda Sun Jan 29 16:08:09 2023 +0900 @@ -55,6 +55,8 @@ -- import Axiom.Extensionality.Propositional -- postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m +open import Data.Empty +open import Relation.Nullary record NormalSubGroup (A : Group c c ) : Set c where open Group A @@ -62,7 +64,7 @@ ⟦_⟧ : Group.Carrier A → Group.Carrier A normal : IsGroupHomomorphism (GR A) (GR A) ⟦_⟧ comm : {a b : Carrier } → b ∙ ⟦ a ⟧ ≈ ⟦ a ⟧ ∙ b - -- + -- because of ¬ ¬ Factor factor : (a b : Carrier) → Carrier is-factor : (a b : Carrier) → b ∙ ⟦ factor a b ⟧ ≈ a @@ -81,6 +83,49 @@ n : Carrier is-an : (x : Carrier) → an N n x +record Factor (A : Group c c ) (N : NormalSubGroup A) (a b : Group.Carrier A ) : Set c where + open Group A + open NormalSubGroup N + open IsGroupHomomorphism normal + field + factor : Carrier + is-factor : b ∙ ⟦ factor ⟧ ≈ a + +¬¬Factor : (A : Group c c ) (N : NormalSubGroup A) → ¬ ¬ ( (a b : Group.Carrier A ) → Factor A N a b ) +¬¬Factor A N neg = ⊥-elim ( fa ( λ y → record { n = y ; is-an = λ x → record { a = x ∙ ⟦ y ⟧ ⁻¹ ; aN=x = f03 } } )) where + open Group A + open NormalSubGroup N + open IsGroupHomomorphism normal + open EqReasoning (Algebra.Group.setoid A) + open Gutil A + open aN + f03 : {x y : Carrier } → x ∙ ⟦ y ⟧ ⁻¹ ∙ ⟦ y ⟧ ≈ x + f03 {x} {y} = begin + x ∙ ⟦ y ⟧ ⁻¹ ∙ ⟦ y ⟧ ≈⟨ ? ⟩ + x ∙ ( ⟦ y ⟧ ⁻¹ ∙ ⟦ y ⟧) ≈⟨ ? ⟩ + x ∎ + fa : ¬ ( (x : Carrier) → aN N ) + fa f = neg ( λ a b → record { factor = n (f ( a ∙ b ⁻¹)) ; is-factor = fa01 a b } ) where + fa01 : (a b : Carrier ) → b ∙ ⟦ n (f ( a ∙ b ⁻¹)) ⟧ ≈ a + fa01 a b = begin + b ∙ ⟦ n (f ( a ∙ b ⁻¹)) ⟧ ≈⟨ ? ⟩ + b ∙ (ε ∙ ⟦ n (f ( a ∙ b ⁻¹)) ⟧ ) ≈⟨ ? ⟩ + b ∙ (( f02 ⁻¹ ∙ f02 ) ∙ ⟦ n (f ( a ∙ b ⁻¹)) ⟧ ) ≈⟨ ? ⟩ + b ∙ ( f02 ⁻¹ ∙ ( f02 ∙ ⟦ n (f ( a ∙ b ⁻¹)) ⟧ )) ≈⟨ cdr ( cdr ( an.aN=x (is-an (f ( a ∙ b ⁻¹)) (f05 ∙ a) ))) ⟩ + b ∙ (f02 ⁻¹ ∙ ( f05 ∙ a)) ≈⟨ ? ⟩ + b ∙ ( (f02 ⁻¹ ∙ f02 ) ∙ b ⁻¹) ∙ a ≈⟨ ? ⟩ + b ∙ ( ε ∙ b ⁻¹) ∙ a ≈⟨ ? ⟩ + b ∙ ( b ⁻¹ ∙ a ) ≈⟨ ? ⟩ + (b ∙ b ⁻¹ ) ∙ a ≈⟨ ? ⟩ + ε ∙ a ≈⟨ ? ⟩ + a ∎ where + f05 : Carrier + f05 = a ∙ b ⁻¹ + f02 : Carrier + f02 = an.a (is-an (f (a ∙ b ⁻¹)) (f05 ∙ a)) + f04 : f02 ∙ b ⁻¹ ≈ f05 + f04 = ? + _/_ : (A : Group c c ) (N : NormalSubGroup A ) → Group c c _/_ A N = record { Carrier = aN N