Mercurial > hg > Members > kono > Proof > galois
changeset 321:7c6f665e687f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 21 Sep 2023 08:23:48 +0900 |
parents | 8fb16f9a882a |
children | 933255f252ce |
files | src/Putil.agda |
diffstat | 1 files changed, 37 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Putil.agda Tue Sep 19 11:11:38 2023 +0900 +++ b/src/Putil.agda Thu Sep 21 08:23:48 2023 +0900 @@ -502,14 +502,47 @@ piso← : (x : Fin n ) → p→ ( p← x ) ≡ x piso← x = p02 _ _ refl refl where p02 : (y z : Fin n) → p← x ≡ y → p→ y ≡ z → z ≡ x - p02 y z px=y py=z with <-fcmp (perm ⟨$⟩ˡ (suc x)) (# 0) + p02 y z px=y py=z with <-fcmp (perm ⟨$⟩ˡ (suc x)) (# 0) ... | tri≈ ¬a b ¬c = ⊥-elim (sh2 perm p0=0 b) - ... | tri> ¬a ¬b c with <-fcmp (perm ⟨$⟩ʳ (suc y)) (# 0) + ... | tri> ¬a ¬b c with <-fcmp (perm ⟨$⟩ʳ (suc y)) (# 0) ... | tri≈ ¬a₁ b ¬c = ⊥-elim (sh1 perm p0=0 b) ... | tri> ¬a₁ ¬b₁ c₁ = ? where open ≡-Reasoning - p03 : toℕ (Inverse.to perm (suc x)) ≡ suc (toℕ y) - p03 = ? + p06 : fromℕ< {Data.Nat.pred (toℕ (Inverse.from perm (suc x)))} (p01 x c) ≡ y + p06 = px=y + p07 : fromℕ< {Data.Nat.pred (toℕ (Inverse.to perm (suc y)))} (p00 y c₁) ≡ z + p07 = py=z + p03 : toℕ (Inverse.from perm (suc x)) ≡ suc (toℕ y) + p03 = begin + toℕ (Inverse.from perm (suc x)) ≡⟨ ? ⟩ + suc (toℕ y) ∎ + p04 : toℕ (Inverse.to perm (suc y)) ≡ suc (toℕ z) + p04 = ? + p05 : Inverse.to perm ( Inverse.from perm (suc x) ) ≡ suc x + p05 = inverseʳ perm + p09 : Data.Nat.pred (toℕ (Inverse.to perm (suc (fromℕ< (p01 x c))))) < n + p09 = ? + p11 : Data.Nat.pred (toℕ (Inverse.to perm (Inverse.from perm (suc x)))) < n + p11 = ? + p12 : toℕ (Inverse.to perm (suc (fromℕ< (p01 x c)))) ∸ 1 ≡ toℕ (Inverse.to perm (Inverse.from perm (suc x))) ∸ 1 + p12 = ? + p13 : Data.Nat.pred (suc (toℕ x)) < n + p13 = ? + p10 : Data.Nat.pred (toℕ (Inverse.to perm (suc y))) ≡ Data.Nat.pred (toℕ (Inverse.to perm (suc (fromℕ< (p01 x c))))) + p10 = cong (λ k → Data.Nat.pred (toℕ (Inverse.to perm (suc k)))) (sym px=y) + p14 : toℕ (Inverse.to perm (Inverse.from perm (suc x))) ∸ 1 ≡ toℕ x + p14 = ? + p08 : z ≡ x + p08 = begin + z ≡⟨ sym (py=z) ⟩ + fromℕ< {Data.Nat.pred (toℕ (Inverse.to perm (suc y)))} (p00 y c₁) + ≡⟨ lemma10 p10 ⟩ + fromℕ< {Data.Nat.pred (toℕ (Inverse.to perm + (suc (fromℕ< {Data.Nat.pred (toℕ (Inverse.from perm (suc x)))} (p01 x c))))) } p09 ≡⟨ lemma10 p12 ⟩ + fromℕ< {Data.Nat.pred (toℕ (Inverse.to perm (Inverse.from perm (suc x))) ) } p11 ≡⟨ lemma10 ? ⟩ + fromℕ< {Data.Nat.pred (toℕ (suc x) ) } p13 ≡⟨ lemma10 refl ⟩ + fromℕ< {toℕ x} fin<n ≡⟨ fromℕ<-toℕ _ _ ⟩ + x ∎ -- with perm ⟨$⟩ˡ (suc x) in eq -- ... | t = ?