Mercurial > hg > Members > kono > Proof > galois
changeset 322:933255f252ce
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 21 Sep 2023 08:40:43 +0900 |
parents | 7c6f665e687f |
children | 558c33f7f8e0 |
files | src/Putil.agda |
diffstat | 1 files changed, 9 insertions(+), 29 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Putil.agda Thu Sep 21 08:23:48 2023 +0900 +++ b/src/Putil.agda Thu Sep 21 08:40:43 2023 +0900 @@ -508,39 +508,19 @@ ... | tri≈ ¬a₁ b ¬c = ⊥-elim (sh1 perm p0=0 b) ... | tri> ¬a₁ ¬b₁ c₁ = ? where open ≡-Reasoning - p06 : fromℕ< {Data.Nat.pred (toℕ (Inverse.from perm (suc x)))} (p01 x c) ≡ y - p06 = px=y - p07 : fromℕ< {Data.Nat.pred (toℕ (Inverse.to perm (suc y)))} (p00 y c₁) ≡ z - p07 = py=z - p03 : toℕ (Inverse.from perm (suc x)) ≡ suc (toℕ y) - p03 = begin - toℕ (Inverse.from perm (suc x)) ≡⟨ ? ⟩ - suc (toℕ y) ∎ - p04 : toℕ (Inverse.to perm (suc y)) ≡ suc (toℕ z) - p04 = ? - p05 : Inverse.to perm ( Inverse.from perm (suc x) ) ≡ suc x - p05 = inverseʳ perm - p09 : Data.Nat.pred (toℕ (Inverse.to perm (suc (fromℕ< (p01 x c))))) < n - p09 = ? - p11 : Data.Nat.pred (toℕ (Inverse.to perm (Inverse.from perm (suc x)))) < n + p11 : {n : ℕ } → (y : Fin (suc n)) → (y<n : Data.Nat.pred (toℕ y) < n) → suc (fromℕ< y<n) ≡ y p11 = ? - p12 : toℕ (Inverse.to perm (suc (fromℕ< (p01 x c)))) ∸ 1 ≡ toℕ (Inverse.to perm (Inverse.from perm (suc x))) ∸ 1 - p12 = ? - p13 : Data.Nat.pred (suc (toℕ x)) < n - p13 = ? - p10 : Data.Nat.pred (toℕ (Inverse.to perm (suc y))) ≡ Data.Nat.pred (toℕ (Inverse.to perm (suc (fromℕ< (p01 x c))))) - p10 = cong (λ k → Data.Nat.pred (toℕ (Inverse.to perm (suc k)))) (sym px=y) - p14 : toℕ (Inverse.to perm (Inverse.from perm (suc x))) ∸ 1 ≡ toℕ x - p14 = ? + p15 : toℕ (Inverse.to perm (suc y)) ∸ 1 ≡ toℕ x + p15 = begin + toℕ (Inverse.to perm (suc y)) ∸ 1 ≡⟨ cong (λ k → toℕ (Inverse.to perm (suc k)) ∸ 1 ) (sym px=y) ⟩ + toℕ (Inverse.to perm (suc (fromℕ< (p01 x c)))) ∸ 1 ≡⟨ cong (λ k → toℕ (Inverse.to perm k) ∸ 1) (p11 _ (p01 x c) ) ⟩ + toℕ (Inverse.to perm (Inverse.from perm (suc x))) ∸ 1 ≡⟨ cong (λ k → toℕ k ∸ 1) (inverseʳ perm) ⟩ + toℕ (suc x) ∸ 1 ≡⟨ ? ⟩ + toℕ x ∎ p08 : z ≡ x p08 = begin z ≡⟨ sym (py=z) ⟩ - fromℕ< {Data.Nat.pred (toℕ (Inverse.to perm (suc y)))} (p00 y c₁) - ≡⟨ lemma10 p10 ⟩ - fromℕ< {Data.Nat.pred (toℕ (Inverse.to perm - (suc (fromℕ< {Data.Nat.pred (toℕ (Inverse.from perm (suc x)))} (p01 x c))))) } p09 ≡⟨ lemma10 p12 ⟩ - fromℕ< {Data.Nat.pred (toℕ (Inverse.to perm (Inverse.from perm (suc x))) ) } p11 ≡⟨ lemma10 ? ⟩ - fromℕ< {Data.Nat.pred (toℕ (suc x) ) } p13 ≡⟨ lemma10 refl ⟩ + fromℕ< {Data.Nat.pred (toℕ (Inverse.to perm (suc y)))} (p00 y c₁) ≡⟨ lemma10 p15 ⟩ fromℕ< {toℕ x} fin<n ≡⟨ fromℕ<-toℕ _ _ ⟩ x ∎