Mercurial > hg > Members > kono > Proof > galois
changeset 297:c9fbb0096224
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 05 Sep 2023 08:56:07 +0900 |
parents | 7c1e3e0be315 |
children | 1e40a3ed74c2 |
files | src/homomorphism.agda |
diffstat | 1 files changed, 87 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/homomorphism.agda Sun Sep 03 18:29:54 2023 +0900 +++ b/src/homomorphism.agda Tue Sep 05 08:56:07 2023 +0900 @@ -50,7 +50,7 @@ -- data IsaN {A : Group c d } (N : NormalSubGroup A) (a : Group.Carrier A ) : (x : Group.Carrier A ) → Set (Level.suc c ⊔ d) where - an : (n : Group.Carrier A ) → (pn : NormalSubGroup.P N n) → IsaN N a (A < a ∙ n > ) + an : (n x : Group.Carrier A ) → A < A < a ∙ n > ≈ x > → (pn : NormalSubGroup.P N n) → IsaN N a x record aNeq {A : Group c d } (N : NormalSubGroup A ) (a b : Group.Carrier A) : Set (Level.suc c ⊔ d) where field @@ -62,6 +62,45 @@ open NormalSubGroup N open EqReasoning (Algebra.Group.setoid A) open Gutil A + open aNeq + -- + -- (aN)(bN) = a(Nb)N = a(bN)N = (ab)NN = (ab)N. + -- + naN : {a x : Carrier} → IsaN N a x → Carrier + naN (an n x eq pn) = n + PaN : {a x : Carrier} → (iax : IsaN N a x) → P (naN iax) + PaN (an n x eq pn) = pn + anaN=x : {a x : Carrier} → (ax : IsaN N a x) → a ∙ naN ax ≈ x + anaN=x (an n x eq pn) = eq + an-factor : {x y a : Carrier } → (xua : IsaN N (x ∙ y) a ) → IsaN N x (a ∙ y ⁻¹) × IsaN N y y + an-factor {x} {y} {a} (an n a1 eqa pn) = an n1 _ an02 (Pcomm pn) + , an n2 _ an03 Pε where + an04 : x ∙ y ∙ n ≈ a + an04 = eqa + -- n ≈ (((y ⁻¹) ∙ (n1 ∙ ((y ⁻¹) ⁻¹ ))) ∙ n2) + -- n ∙ n2 ⁻¹ ≈ (((y ⁻¹) ∙ (n1 ∙ ((y ⁻¹) ⁻¹ ))) + -- y ∙ (n ∙ n2 ⁻¹) ∙ y ⁻¹ ≈ n1 + n1 : Carrier + n1 = y ∙ (n ∙ y ⁻¹) + n2 : Carrier + n2 = ε + an02 : x ∙ n1 ≈ a ∙ y ⁻¹ + an02 = begin + x ∙ n1 ≈⟨ grefl ⟩ + x ∙ (y ∙ (n ∙ y ⁻¹)) ≈⟨ solve monoid ⟩ + (x ∙ y ∙ n ) ∙ y ⁻¹ ≈⟨ car eqa ⟩ + a ∙ y ⁻¹ ∎ + an03 : y ∙ n2 ≈ y + an03 = proj₂ identity _ + an-comp : {x y a b : Carrier } → IsaN N x a → IsaN N y b → IsaN N (x ∙ y) (a ∙ b) + an-comp {x} {y} {a} {b} (an n1 a1 eqa p1) (an n2 a2 eqb p2) = an (((y ⁻¹) ∙ (n1 ∙ ((y ⁻¹) ⁻¹ ))) ∙ n2) _ an01 (P∙ (Pcomm p1) p2) where + an01 : x ∙ y ∙ (((y ⁻¹) ∙ (n1 ∙ ((y ⁻¹) ⁻¹ ))) ∙ n2) ≈ a ∙ b + an01 = begin + x ∙ y ∙ (((y ⁻¹) ∙ (n1 ∙ ((y ⁻¹) ⁻¹ ))) ∙ n2) ≈⟨ solve monoid ⟩ + (x ∙ (y ∙ y ⁻¹) ∙ n1) ∙ (y ⁻¹) ⁻¹ ∙ n2 ≈⟨ car (∙-cong (car (cdr (proj₂ inverse _))) f⁻¹⁻¹≈f ) ⟩ + (x ∙ ε ∙ n1) ∙ y ∙ n2 ≈⟨ solve monoid ⟩ + (x ∙ n1) ∙ (y ∙ n2) ≈⟨ ∙-cong eqa eqb ⟩ + a ∙ b ∎ _/_ : (A : Group c d ) (N : NormalSubGroup A ) → Group c (Level.suc c ⊔ d) _/_ A N = record { @@ -72,9 +111,9 @@ ; _⁻¹ = λ x → x ⁻¹ ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = record {refl = nrefl - ; trans = ? ; sym = λ a=b → ? + ; trans = ntrans ; sym = λ a=b → nsym a=b } - ; ∙-cong = λ {x} {y} {u} {v} x=y u=v → ? } + ; ∙-cong = λ {x} {y} {u} {v} x=y u=v → gk00 x=y u=v } ; assoc = ? } ; identity = ? } ; inverse = (λ x → ? ) , (λ x → ? ) @@ -87,9 +126,52 @@ open EqReasoning (Algebra.Group.setoid A) open Gutil A open AN A N + open aNeq nrefl : {x : Carrier} → x =n= x - nrefl = ? - + nrefl {x} = record { eq→ = λ {lt} ix → ix ; eq← = λ {lt} ix → ix } + nsym : {x y : Carrier} → x =n= y → y =n= x + nsym {x} {y} eq = record { eq→ = λ {lt} ix → eq← eq ix ; eq← = λ {lt} ix → eq→ eq ix } + ntrans : {x y z : Carrier} → x =n= y → y =n= z → x =n= z + ntrans {x} {y} {z} x=y y=z = record { eq→ = λ {lt} ix → eq→ y=z (eq→ x=y ix) + ; eq← = λ {lt} ix → eq← x=y (eq← y=z ix) } + gk00 : {x y u v : Carrier } → aNeq N x y → aNeq N u v → aNeq N (x ∙ u) (y ∙ v) + gk00 {x} {y} {u} {v} x=y u=v = record { eq→ = gk01 ; eq← = gk02 } where + gk01 : {a : Carrier} → IsaN N (x ∙ u) a → IsaN N (y ∙ v) a + gk01 {a} (an n z eq pn) = an gk1n z gk13 (PaN gk14) where + gk10 : IsaN N x (a ∙ u ⁻¹) + gk10 = proj₁ (an-factor (an n z eq pn)) + gk12 : IsaN N u u + gk12 = proj₂ (an-factor (an n z eq pn)) + gk14 : IsaN N _ _ + gk14 = an-comp (eq→ x=y gk10) (eq→ u=v gk12 ) + gk1n : Carrier + gk1n = naN gk14 + gk13 : (y ∙ v) ∙ gk1n ≈ a + gk13 = begin + y ∙ v ∙ gk1n ≈⟨ grefl ⟩ + y ∙ v ∙ naN gk14 ≈⟨ anaN=x gk14 ⟩ + a ∙ u ⁻¹ ∙ u ≈⟨ solve monoid ⟩ + a ∙ (u ⁻¹ ∙ u) ≈⟨ cdr ( proj₁ inverse _) ⟩ + a ∙ ε ≈⟨ solve monoid ⟩ + a ∎ + gk02 : {a : Carrier} → IsaN N (y ∙ v) a → IsaN N (x ∙ u) a + gk02 {a} (an n z eq pn) = an gk1n z gk13 (PaN gk14) where + gk10 : IsaN N y (a ∙ v ⁻¹) + gk10 = proj₁ (an-factor (an n z eq pn)) + gk12 : IsaN N v v + gk12 = proj₂ (an-factor (an n z eq pn)) + gk14 : IsaN N _ _ + gk14 = an-comp (eq← x=y gk10) (eq← u=v gk12 ) + gk1n : Carrier + gk1n = naN gk14 + gk13 : (x ∙ u) ∙ gk1n ≈ a + gk13 = begin + x ∙ u ∙ gk1n ≈⟨ grefl ⟩ + x ∙ u ∙ naN gk14 ≈⟨ anaN=x gk14 ⟩ + a ∙ v ⁻¹ ∙ v ≈⟨ solve monoid ⟩ + a ∙ (v ⁻¹ ∙ v) ≈⟨ cdr ( proj₁ inverse _) ⟩ + a ∙ ε ≈⟨ solve monoid ⟩ + a ∎ -- K ⊂ ker(f) K⊆ker : (G H : Group c d) (K : NormalSubGroup G ) (f : Group.Carrier G → Group.Carrier H )