Mercurial > hg > Members > kono > Proof > galois
changeset 298:1e40a3ed74c2
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 05 Sep 2023 11:13:19 +0900 |
parents | c9fbb0096224 |
children | e2c48fac6215 |
files | src/homomorphism.agda |
diffstat | 1 files changed, 62 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/homomorphism.agda Tue Sep 05 08:56:07 2023 +0900 +++ b/src/homomorphism.agda Tue Sep 05 11:13:19 2023 +0900 @@ -101,6 +101,17 @@ (x ∙ ε ∙ n1) ∙ y ∙ n2 ≈⟨ solve monoid ⟩ (x ∙ n1) ∙ (y ∙ n2) ≈⟨ ∙-cong eqa eqb ⟩ a ∙ b ∎ + an-cong : {a b x : Carrier } → a ≈ b → IsaN N a x → IsaN N b x + an-cong {a} {b} {x} eq (an n _ eq1 pn) = an n _ an04 pn where + an04 : b ∙ n ≈ x + an04 = begin + b ∙ n ≈⟨ car (gsym eq) ⟩ + a ∙ n ≈⟨ eq1 ⟩ + x ∎ + aneq : {a b : Carrier } → a ≈ b → aNeq N a b + aneq {a} {b} eq = record { eq→ = λ {x} lt → an-cong eq lt ; eq← = λ lt → an-cong (gsym eq) lt } + aNeq→n-eq : {a b x : Carrier } → aNeq N a b → (ia : IsaN N a x) → (ib : IsaN N b x) → naN ia ≈ naN ib + aNeq→n-eq eq = ? _/_ : (A : Group c d ) (N : NormalSubGroup A ) → Group c (Level.suc c ⊔ d) _/_ A N = record { @@ -114,10 +125,10 @@ ; trans = ntrans ; sym = λ a=b → nsym a=b } ; ∙-cong = λ {x} {y} {u} {v} x=y u=v → gk00 x=y u=v } - ; assoc = ? } - ; identity = ? } - ; inverse = (λ x → ? ) , (λ x → ? ) - ; ⁻¹-cong = ? + ; assoc = gkassoc } + ; identity = (λ a → aneq (proj₁ identity _)) , (λ a → aneq (proj₂ identity _) ) } + ; inverse = (λ a → aneq (proj₁ inverse _)) , (λ x → aneq (proj₂ inverse _) ) + ; ⁻¹-cong = gkcong⁻¹ } } where _=n=_ = aNeq N @@ -172,6 +183,53 @@ a ∙ (v ⁻¹ ∙ v) ≈⟨ cdr ( proj₁ inverse _) ⟩ a ∙ ε ≈⟨ solve monoid ⟩ a ∎ + gkassoc : (x y z : Carrier ) → aNeq N ((x ∙ y ) ∙ z) (x ∙ (y ∙ z)) + gkassoc x y z = record { eq→ = gk04 ; eq← = gk06 } where + gk04 : {a : Carrier } → IsaN N (x ∙ y ∙ z) a → IsaN N (x ∙ (y ∙ z)) a + gk04 {a} (an n _ eq pn) = an n _ gk05 pn where + gk05 : x ∙ (y ∙ z) ∙ n ≈ a + gk05 = begin + x ∙ (y ∙ z) ∙ n ≈⟨ solve monoid ⟩ + x ∙ y ∙ z ∙ n ≈⟨ eq ⟩ + a ∎ + gk06 : {a : Carrier } → IsaN N (x ∙ (y ∙ z)) a → IsaN N (x ∙ y ∙ z) a + gk06 {a} (an n _ eq pn) = an n _ gk05 pn where + gk05 : x ∙ y ∙ z ∙ n ≈ a + gk05 = begin + x ∙ y ∙ z ∙ n ≈⟨ solve monoid ⟩ + x ∙ (y ∙ z) ∙ n ≈⟨ eq ⟩ + a ∎ + gkcong⁻¹ : {x y : Carrier } → aNeq N x y → aNeq N (x ⁻¹) (y ⁻¹) + gkcong⁻¹ {x} {y} x=y = record { eq→ = gk07 ; eq← = gk08 } where + gk07 : {a : Carrier } → IsaN N (x ⁻¹) a → IsaN N (y ⁻¹) a + gk07 {a} (an n _ eq pn) = an n _ gk05 pn where + gk06 : x ∙ n ≈ a → y ∙ n ≈ a + gk06 eq with eq→ x=y (an n _ eq pn) + ... | an n1 .a eq1 pn = ? + gk05 : y ⁻¹ ∙ n ≈ a + gk05 = begin + y ⁻¹ ∙ n ≈⟨ cdr ( gsym f⁻¹⁻¹≈f ) ⟩ + y ⁻¹ ∙ ( n ⁻¹ ) ⁻¹ ≈⟨ lemma5 _ _ ⟩ + (n ⁻¹ ∙ y ) ⁻¹ ≈⟨ ⁻¹-cong ( begin + n ⁻¹ ∙ y ≈⟨ gsym (proj₂ identity _) ⟩ + (n ⁻¹ ∙ y) ∙ ε ≈⟨ cdr (gsym (proj₂ inverse _)) ⟩ + (n ⁻¹ ∙ y) ∙ (n ∙ n ⁻¹) ≈⟨ solve monoid ⟩ + n ⁻¹ ∙ (y ∙ n) ∙ n ⁻¹ ≈⟨ car (cdr ?) ⟩ + n ⁻¹ ∙ (x ∙ n) ∙ n ⁻¹ ≈⟨ ? ⟩ + n ⁻¹ ∙ x ∙ (n ∙ n ⁻¹) ≈⟨ ? ⟩ + n ⁻¹ ∙ x ∙ ε ≈⟨ ? ⟩ + n ⁻¹ ∙ x ∎ ) ⟩ + ( n ⁻¹ ∙ x ) ⁻¹ ≈⟨ ? ⟩ + x ⁻¹ ∙ (n ⁻¹ ) ⁻¹ ≈⟨ ? ⟩ + x ⁻¹ ∙ n ≈⟨ eq ⟩ + a ∎ + gk08 : {a : Carrier } → IsaN N (y ⁻¹) a → IsaN N (x ⁻¹) a + gk08 {a} (an n _ eq pn) = an n _ gk05 pn where + gk05 : x ⁻¹ ∙ n ≈ a + gk05 = begin + x ⁻¹ ∙ n ≈⟨ ? ⟩ + y ⁻¹ ∙ n ≈⟨ eq ⟩ + a ∎ -- K ⊂ ker(f) K⊆ker : (G H : Group c d) (K : NormalSubGroup G ) (f : Group.Carrier G → Group.Carrier H )