Mercurial > hg > Members > kono > Proof > galois
changeset 299:e2c48fac6215
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 06 Sep 2023 11:21:39 +0900 |
parents | 1e40a3ed74c2 |
children | 3ca1d0e379d0 |
files | src/homomorphism.agda |
diffstat | 1 files changed, 32 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/src/homomorphism.agda Tue Sep 05 11:13:19 2023 +0900 +++ b/src/homomorphism.agda Wed Sep 06 11:21:39 2023 +0900 @@ -74,7 +74,7 @@ anaN=x (an n x eq pn) = eq an-factor : {x y a : Carrier } → (xua : IsaN N (x ∙ y) a ) → IsaN N x (a ∙ y ⁻¹) × IsaN N y y an-factor {x} {y} {a} (an n a1 eqa pn) = an n1 _ an02 (Pcomm pn) - , an n2 _ an03 Pε where + , an n1 _ an03 Pε where an04 : x ∙ y ∙ n ≈ a an04 = eqa -- n ≈ (((y ⁻¹) ∙ (n1 ∙ ((y ⁻¹) ⁻¹ ))) ∙ n2) @@ -108,10 +108,27 @@ b ∙ n ≈⟨ car (gsym eq) ⟩ a ∙ n ≈⟨ eq1 ⟩ x ∎ + conj : (n x : Carrier) → Carrier + conj n x = x ∙ (n ∙ x ⁻¹) + Pconj : (n x : Carrier) → P n → P (conj n x) + Pconj n x pn = Pcomm pn + aN=Na : {x n : Carrier} → x ∙ n ≈ conj n x ∙ x + aN=Na {x} {n} = gsym ( begin + (x ∙ (n ∙ x ⁻¹)) ∙ x ≈⟨ solve monoid ⟩ + (x ∙ n ) ∙ (x ⁻¹ ∙ x) ≈⟨ cdr (proj₁ inverse _) ⟩ + (x ∙ n ) ∙ ε ≈⟨ proj₂ identity _ ⟩ + x ∙ n ∎ ) + Na=aN : {x n : Carrier} → n ∙ x ≈ x ∙ conj n (x ⁻¹) + Na=aN {x} {n} = gsym ( begin + x ∙ ( x ⁻¹ ∙ (n ∙ (x ⁻¹ ) ⁻¹ ) ) ≈⟨ solve monoid ⟩ + (x ∙ x ⁻¹ ) ∙ (n ∙ (x ⁻¹) ⁻¹) ≈⟨ ∙-cong (proj₂ inverse _) (cdr f⁻¹⁻¹≈f) ⟩ + ε ∙ (n ∙ x) ≈⟨ proj₁ identity _ ⟩ + n ∙ x ∎ ) + aneq : {a b : Carrier } → a ≈ b → aNeq N a b aneq {a} {b} eq = record { eq→ = λ {x} lt → an-cong eq lt ; eq← = λ lt → an-cong (gsym eq) lt } - aNeq→n-eq : {a b x : Carrier } → aNeq N a b → (ia : IsaN N a x) → (ib : IsaN N b x) → naN ia ≈ naN ib - aNeq→n-eq eq = ? + -- this may wrong + -- aNeq→n-eq : {a b x : Carrier } → aNeq N a b → (ia : IsaN N a x) → (ib : IsaN N b x) → naN ia ≈ naN ib _/_ : (A : Group c d ) (N : NormalSubGroup A ) → Group c (Level.suc c ⊔ d) _/_ A N = record { @@ -201,28 +218,20 @@ a ∎ gkcong⁻¹ : {x y : Carrier } → aNeq N x y → aNeq N (x ⁻¹) (y ⁻¹) gkcong⁻¹ {x} {y} x=y = record { eq→ = gk07 ; eq← = gk08 } where + -- a⁻¹N ≈ (Na)⁻¹ ≈ (aN)⁻¹ ≈ (bN)⁻¹ ≈ (Nb)⁻¹ ≈ b⁻¹N + -- a ⁻¹ ∙ n ≈ ( n ⁻¹ ∙ a ) ⁻¹ ≈ ( a ∙ n₁ ) ⁻¹ ≈ ( b ∙ n₂ ) ⁻¹ ≈ ( n₃ ∙ b ) ⁻¹ ≈ b ⁻¹ ∙ n₃ gk07 : {a : Carrier } → IsaN N (x ⁻¹) a → IsaN N (y ⁻¹) a - gk07 {a} (an n _ eq pn) = an n _ gk05 pn where - gk06 : x ∙ n ≈ a → y ∙ n ≈ a - gk06 eq with eq→ x=y (an n _ eq pn) - ... | an n1 .a eq1 pn = ? - gk05 : y ⁻¹ ∙ n ≈ a - gk05 = begin - y ⁻¹ ∙ n ≈⟨ cdr ( gsym f⁻¹⁻¹≈f ) ⟩ - y ⁻¹ ∙ ( n ⁻¹ ) ⁻¹ ≈⟨ lemma5 _ _ ⟩ - (n ⁻¹ ∙ y ) ⁻¹ ≈⟨ ⁻¹-cong ( begin - n ⁻¹ ∙ y ≈⟨ gsym (proj₂ identity _) ⟩ - (n ⁻¹ ∙ y) ∙ ε ≈⟨ cdr (gsym (proj₂ inverse _)) ⟩ - (n ⁻¹ ∙ y) ∙ (n ∙ n ⁻¹) ≈⟨ solve monoid ⟩ - n ⁻¹ ∙ (y ∙ n) ∙ n ⁻¹ ≈⟨ car (cdr ?) ⟩ - n ⁻¹ ∙ (x ∙ n) ∙ n ⁻¹ ≈⟨ ? ⟩ - n ⁻¹ ∙ x ∙ (n ∙ n ⁻¹) ≈⟨ ? ⟩ - n ⁻¹ ∙ x ∙ ε ≈⟨ ? ⟩ - n ⁻¹ ∙ x ∎ ) ⟩ - ( n ⁻¹ ∙ x ) ⁻¹ ≈⟨ ? ⟩ - x ⁻¹ ∙ (n ⁻¹ ) ⁻¹ ≈⟨ ? ⟩ + gk07 {a} (an n _ eq pn) = an ? _ ? ? where + gk01 : y ⁻¹ ∙ ? ≈ a + gk01 = begin + y ⁻¹ ∙ ? ≈⟨ ? ⟩ + (? ∙ y ) ⁻¹ ≈⟨ ? ⟩ + (y ∙ ? ) ⁻¹ ≈⟨ ? ⟩ + (x ∙ conj (n ⁻¹) (x ⁻¹) ) ⁻¹ ≈⟨ ⁻¹-cong (gsym Na=aN ) ⟩ + (n ⁻¹ ∙ x ) ⁻¹ ≈⟨ ? ⟩ + x ⁻¹ ∙ (n ⁻¹) ⁻¹ ≈⟨ ? ⟩ x ⁻¹ ∙ n ≈⟨ eq ⟩ - a ∎ + a ∎ gk08 : {a : Carrier } → IsaN N (y ⁻¹) a → IsaN N (x ⁻¹) a gk08 {a} (an n _ eq pn) = an n _ gk05 pn where gk05 : x ⁻¹ ∙ n ≈ a