Mercurial > hg > Members > ryokka > HoareLogic
diff whileTestGears.agda @ 73:52acd110df18
fix
author | ryokka |
---|---|
date | Thu, 26 Dec 2019 17:39:56 +0900 |
parents | 66ba3b1eec0a |
children | 6f26de2fb7fe |
line wrap: on
line diff
--- a/whileTestGears.agda Wed Dec 25 17:15:17 2019 +0900 +++ b/whileTestGears.agda Thu Dec 26 17:39:56 2019 +0900 @@ -211,11 +211,6 @@ whileLoopPSem env s next exit | tri≈ ¬a b ¬c rewrite (sym b) = exit env (proof (λ z → z)) whileLoopPSem env s next exit | tri< a ¬b ¬c = next env (proof (λ z → z)) -{-# TERMINATING #-} -loopPP : (input : Envc ) → Envc -loopPP input with <-cmp 0 (varn input) -loopPP input | tri≈ ¬a b ¬c = input -loopPP input | tri< a ¬b ¬c = loopPP (whileLoopP input (λ next → loopPP next) (λ output → output)) whileLoopPSem' : {l : Level} {t : Set l} → (input : Envc ) → whileTestStateP s2 input @@ -225,21 +220,23 @@ whileLoopPSem' env@(record { c10 = c10 ; varn = (suc varn₁) ; vari = vari }) s next exit = next env (proof (λ z → z)) -loopPP' : (n : ℕ) → (input : Envc ) → (n ≡ varn input) → Envc -loopPP' n input@(record { c10 = c10 ; varn = zero ; vari = vari }) refl = input +loopPP : (n : ℕ) → (input : Envc ) → (n ≡ varn input) → Envc +loopPP n input@(record { c10 = c10 ; varn = zero ; vari = vari }) refl = input +loopPP n input@(record { c10 = c10 ; varn = (suc varn₁) ; vari = vari }) refl = whileLoopP (record { c10 = c10 ; varn = (varn₁) ; vari = vari }) (λ x → loopPP (n - 1) (record { c10 = c10 ; varn = (varn₁) ; vari = vari }) refl) (λ output → output) --- Maybe "Z-Conbinater" --- Z = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y)) +loopPPSem : {l : Level} {t : Set l} → (input output : Envc ) → loopPP (varn input) input refl ≡ output + → (whileTestStateP s2 input ) implies (whileTestStateP sf output) +loopPPSem {l} {t} input output refl = loopPPSemInduct (varn input) input refl + where + loopPPSemInduct : (n : ℕ) → (current : Envc) → varn current ≡ n → (whileTestStateP s2 current ) implies (whileTestStateP sf output) + loopPPSemInduct zero current refl = proof λ x → {!!} + loopPPSemInduct (suc n) current refl with whileLoopPSem current {!!} {!!} {!!} + ... | aa = {!!} -loopPP' n input@(record { c10 = c10 ; varn = (suc varn₁) ; vari = vari }) refl = whileLoopP (record { c10 = c10 ; varn = (varn₁) ; vari = vari }) (λ x → loopPP' (n - 1) (record { c10 = c10 ; varn = (varn₁) ; vari = vari }) refl) (λ output → output) lpc : (input : Envc ) → Envc lpc input@(record { c10 = c10 ; varn = zero ; vari = vari }) = input - --- Maybe "Z-Conbinater" --- Z = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y)) - lpc input@(record { c10 = c10 ; varn = (suc varn₁) ; vari = vari }) = whileLoopP (record { c10 = c10 ; varn = (varn₁) ; vari = vari }) (λ x → lpc record { c10 = c10 ; varn = (varn₁) ; vari = vari }) (λ output → output) @@ -255,10 +252,11 @@ whileLoopPSemSound : (input output : Envc ) → whileTestStateP s2 input → output ≡ lpc input - -- (whileLoopP input (λ tt → whileLoopP tt {!!} {!!}) {!!}) ← y-conbinater → (whileTestStateP s2 input ) implies ( whileTestStateP sf output ) -whileLoopPSemSound input output pre refl with (lpc input) -whileLoopPSemSound record { c10 = c11 ; varn = varn₁ ; vari = vari₁ } .(lpc (record { c10 = c11 ; varn = varn₁ ; vari = vari₁ })) pre refl | record { c10 = c10 ; varn = varn ; vari = vari } = proof λ x → {!!} +whileLoopPSemSound input output pre eq = {!!} + +-- with (lpc input) +-- record { c10 = c11 ; varn = varn₁ ; vari = vari₁ } .(lpc (record { c10 = c11 ; varn = varn₁ ; vari = vari₁ })) pre refl | record { c10 = c10 ; varn = varn ; vari = vari } = proof λ x → {!!} -- where -- lem : (whileTestStateP s2 input ) → (varn input + vari input ≡ c10 input) -- implies (vari output ≡ c10 output)