Mercurial > hg > Members > tobaru > cbc > CbC_llvm
comparison lib/Target/X86/X86InstrVecCompiler.td @ 121:803732b1fca8
LLVM 5.0
author | kono |
---|---|
date | Fri, 27 Oct 2017 17:07:41 +0900 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
120:1172e4bd9c6f | 121:803732b1fca8 |
---|---|
1 //===- X86InstrVecCompiler.td - Vector Compiler Patterns ---*- tablegen -*-===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This file describes the various vector pseudo instructions used by the | |
11 // compiler, as well as Pat patterns used during instruction selection. | |
12 // | |
13 //===----------------------------------------------------------------------===// | |
14 | |
15 //===----------------------------------------------------------------------===// | |
16 // No op bitconverts | |
17 //===----------------------------------------------------------------------===// | |
18 | |
19 // Bitcasts between 128-bit vector types. Return the original type since | |
20 // no instruction is needed for the conversion | |
21 def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; | |
22 def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; | |
23 def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; | |
24 def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; | |
25 def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; | |
26 def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; | |
27 def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; | |
28 def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; | |
29 def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; | |
30 def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; | |
31 def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; | |
32 def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; | |
33 def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; | |
34 def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; | |
35 def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; | |
36 def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; | |
37 def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; | |
38 def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; | |
39 def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; | |
40 def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; | |
41 def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; | |
42 def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; | |
43 def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; | |
44 def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; | |
45 def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; | |
46 def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; | |
47 def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; | |
48 def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; | |
49 def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; | |
50 def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; | |
51 def : Pat<(f128 (bitconvert (i128 FR128:$src))), (f128 FR128:$src)>; | |
52 def : Pat<(i128 (bitconvert (f128 FR128:$src))), (i128 FR128:$src)>; | |
53 | |
54 // Bitcasts between 256-bit vector types. Return the original type since | |
55 // no instruction is needed for the conversion | |
56 def : Pat<(v4i64 (bitconvert (v8i32 VR256:$src))), (v4i64 VR256:$src)>; | |
57 def : Pat<(v4i64 (bitconvert (v16i16 VR256:$src))), (v4i64 VR256:$src)>; | |
58 def : Pat<(v4i64 (bitconvert (v32i8 VR256:$src))), (v4i64 VR256:$src)>; | |
59 def : Pat<(v4i64 (bitconvert (v8f32 VR256:$src))), (v4i64 VR256:$src)>; | |
60 def : Pat<(v4i64 (bitconvert (v4f64 VR256:$src))), (v4i64 VR256:$src)>; | |
61 def : Pat<(v8i32 (bitconvert (v4i64 VR256:$src))), (v8i32 VR256:$src)>; | |
62 def : Pat<(v8i32 (bitconvert (v16i16 VR256:$src))), (v8i32 VR256:$src)>; | |
63 def : Pat<(v8i32 (bitconvert (v32i8 VR256:$src))), (v8i32 VR256:$src)>; | |
64 def : Pat<(v8i32 (bitconvert (v4f64 VR256:$src))), (v8i32 VR256:$src)>; | |
65 def : Pat<(v8i32 (bitconvert (v8f32 VR256:$src))), (v8i32 VR256:$src)>; | |
66 def : Pat<(v16i16 (bitconvert (v4i64 VR256:$src))), (v16i16 VR256:$src)>; | |
67 def : Pat<(v16i16 (bitconvert (v8i32 VR256:$src))), (v16i16 VR256:$src)>; | |
68 def : Pat<(v16i16 (bitconvert (v32i8 VR256:$src))), (v16i16 VR256:$src)>; | |
69 def : Pat<(v16i16 (bitconvert (v4f64 VR256:$src))), (v16i16 VR256:$src)>; | |
70 def : Pat<(v16i16 (bitconvert (v8f32 VR256:$src))), (v16i16 VR256:$src)>; | |
71 def : Pat<(v32i8 (bitconvert (v4i64 VR256:$src))), (v32i8 VR256:$src)>; | |
72 def : Pat<(v32i8 (bitconvert (v8i32 VR256:$src))), (v32i8 VR256:$src)>; | |
73 def : Pat<(v32i8 (bitconvert (v16i16 VR256:$src))), (v32i8 VR256:$src)>; | |
74 def : Pat<(v32i8 (bitconvert (v4f64 VR256:$src))), (v32i8 VR256:$src)>; | |
75 def : Pat<(v32i8 (bitconvert (v8f32 VR256:$src))), (v32i8 VR256:$src)>; | |
76 def : Pat<(v8f32 (bitconvert (v4i64 VR256:$src))), (v8f32 VR256:$src)>; | |
77 def : Pat<(v8f32 (bitconvert (v8i32 VR256:$src))), (v8f32 VR256:$src)>; | |
78 def : Pat<(v8f32 (bitconvert (v16i16 VR256:$src))), (v8f32 VR256:$src)>; | |
79 def : Pat<(v8f32 (bitconvert (v32i8 VR256:$src))), (v8f32 VR256:$src)>; | |
80 def : Pat<(v8f32 (bitconvert (v4f64 VR256:$src))), (v8f32 VR256:$src)>; | |
81 def : Pat<(v4f64 (bitconvert (v4i64 VR256:$src))), (v4f64 VR256:$src)>; | |
82 def : Pat<(v4f64 (bitconvert (v8i32 VR256:$src))), (v4f64 VR256:$src)>; | |
83 def : Pat<(v4f64 (bitconvert (v16i16 VR256:$src))), (v4f64 VR256:$src)>; | |
84 def : Pat<(v4f64 (bitconvert (v32i8 VR256:$src))), (v4f64 VR256:$src)>; | |
85 def : Pat<(v4f64 (bitconvert (v8f32 VR256:$src))), (v4f64 VR256:$src)>; | |
86 | |
87 // Bitcasts between 512-bit vector types. Return the original type since | |
88 // no instruction is needed for the conversion. | |
89 def : Pat<(v8f64 (bitconvert (v8i64 VR512:$src))), (v8f64 VR512:$src)>; | |
90 def : Pat<(v8f64 (bitconvert (v16i32 VR512:$src))), (v8f64 VR512:$src)>; | |
91 def : Pat<(v8f64 (bitconvert (v32i16 VR512:$src))), (v8f64 VR512:$src)>; | |
92 def : Pat<(v8f64 (bitconvert (v64i8 VR512:$src))), (v8f64 VR512:$src)>; | |
93 def : Pat<(v8f64 (bitconvert (v16f32 VR512:$src))), (v8f64 VR512:$src)>; | |
94 def : Pat<(v16f32 (bitconvert (v8i64 VR512:$src))), (v16f32 VR512:$src)>; | |
95 def : Pat<(v16f32 (bitconvert (v16i32 VR512:$src))), (v16f32 VR512:$src)>; | |
96 def : Pat<(v16f32 (bitconvert (v32i16 VR512:$src))), (v16f32 VR512:$src)>; | |
97 def : Pat<(v16f32 (bitconvert (v64i8 VR512:$src))), (v16f32 VR512:$src)>; | |
98 def : Pat<(v16f32 (bitconvert (v8f64 VR512:$src))), (v16f32 VR512:$src)>; | |
99 def : Pat<(v8i64 (bitconvert (v16i32 VR512:$src))), (v8i64 VR512:$src)>; | |
100 def : Pat<(v8i64 (bitconvert (v32i16 VR512:$src))), (v8i64 VR512:$src)>; | |
101 def : Pat<(v8i64 (bitconvert (v64i8 VR512:$src))), (v8i64 VR512:$src)>; | |
102 def : Pat<(v8i64 (bitconvert (v8f64 VR512:$src))), (v8i64 VR512:$src)>; | |
103 def : Pat<(v8i64 (bitconvert (v16f32 VR512:$src))), (v8i64 VR512:$src)>; | |
104 def : Pat<(v16i32 (bitconvert (v8i64 VR512:$src))), (v16i32 VR512:$src)>; | |
105 def : Pat<(v16i32 (bitconvert (v16f32 VR512:$src))), (v16i32 VR512:$src)>; | |
106 def : Pat<(v16i32 (bitconvert (v32i16 VR512:$src))), (v16i32 VR512:$src)>; | |
107 def : Pat<(v16i32 (bitconvert (v64i8 VR512:$src))), (v16i32 VR512:$src)>; | |
108 def : Pat<(v16i32 (bitconvert (v8f64 VR512:$src))), (v16i32 VR512:$src)>; | |
109 def : Pat<(v32i16 (bitconvert (v8i64 VR512:$src))), (v32i16 VR512:$src)>; | |
110 def : Pat<(v32i16 (bitconvert (v16i32 VR512:$src))), (v32i16 VR512:$src)>; | |
111 def : Pat<(v32i16 (bitconvert (v64i8 VR512:$src))), (v32i16 VR512:$src)>; | |
112 def : Pat<(v32i16 (bitconvert (v8f64 VR512:$src))), (v32i16 VR512:$src)>; | |
113 def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>; | |
114 def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>; | |
115 def : Pat<(v64i8 (bitconvert (v8i64 VR512:$src))), (v64i8 VR512:$src)>; | |
116 def : Pat<(v64i8 (bitconvert (v16i32 VR512:$src))), (v64i8 VR512:$src)>; | |
117 def : Pat<(v64i8 (bitconvert (v32i16 VR512:$src))), (v64i8 VR512:$src)>; | |
118 def : Pat<(v64i8 (bitconvert (v8f64 VR512:$src))), (v64i8 VR512:$src)>; | |
119 def : Pat<(v64i8 (bitconvert (v16f32 VR512:$src))), (v64i8 VR512:$src)>; | |
120 | |
121 | |
122 //===----------------------------------------------------------------------===// | |
123 // Non-instruction patterns | |
124 //===----------------------------------------------------------------------===// | |
125 | |
126 // A vector extract of the first f32/f64 position is a subregister copy | |
127 def : Pat<(f32 (extractelt (v4f32 VR128:$src), (iPTR 0))), | |
128 (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32)>; | |
129 def : Pat<(f64 (extractelt (v2f64 VR128:$src), (iPTR 0))), | |
130 (COPY_TO_REGCLASS (v2f64 VR128:$src), FR64)>; | |
131 | |
132 // Implicitly promote a 32-bit scalar to a vector. | |
133 def : Pat<(v4f32 (scalar_to_vector FR32:$src)), | |
134 (COPY_TO_REGCLASS FR32:$src, VR128)>; | |
135 // Implicitly promote a 64-bit scalar to a vector. | |
136 def : Pat<(v2f64 (scalar_to_vector FR64:$src)), | |
137 (COPY_TO_REGCLASS FR64:$src, VR128)>; | |
138 | |
139 | |
140 //===----------------------------------------------------------------------===// | |
141 // Subvector tricks | |
142 //===----------------------------------------------------------------------===// | |
143 | |
144 // Patterns for insert_subvector/extract_subvector to/from index=0 | |
145 multiclass subvector_subreg_lowering<RegisterClass subRC, ValueType subVT, | |
146 RegisterClass RC, ValueType VT, | |
147 SubRegIndex subIdx> { | |
148 def : Pat<(subVT (extract_subvector (VT RC:$src), (iPTR 0))), | |
149 (subVT (EXTRACT_SUBREG RC:$src, subIdx))>; | |
150 | |
151 let AddedComplexity = 25 in // to give priority over vinsertf128rm | |
152 def : Pat<(VT (insert_subvector undef, subRC:$src, (iPTR 0))), | |
153 (VT (INSERT_SUBREG (IMPLICIT_DEF), subRC:$src, subIdx))>; | |
154 } | |
155 | |
156 // A 128-bit subvector extract from the first 256-bit vector position is a | |
157 // subregister copy that needs no instruction. Likewise, a 128-bit subvector | |
158 // insert to the first 256-bit vector position is a subregister copy that needs | |
159 // no instruction. | |
160 defm : subvector_subreg_lowering<VR128, v4i32, VR256, v8i32, sub_xmm>; | |
161 defm : subvector_subreg_lowering<VR128, v4f32, VR256, v8f32, sub_xmm>; | |
162 defm : subvector_subreg_lowering<VR128, v2i64, VR256, v4i64, sub_xmm>; | |
163 defm : subvector_subreg_lowering<VR128, v2f64, VR256, v4f64, sub_xmm>; | |
164 defm : subvector_subreg_lowering<VR128, v8i16, VR256, v16i16, sub_xmm>; | |
165 defm : subvector_subreg_lowering<VR128, v16i8, VR256, v32i8, sub_xmm>; | |
166 | |
167 // A 128-bit subvector extract from the first 512-bit vector position is a | |
168 // subregister copy that needs no instruction. Likewise, a 128-bit subvector | |
169 // insert to the first 512-bit vector position is a subregister copy that needs | |
170 // no instruction. | |
171 defm : subvector_subreg_lowering<VR128, v4i32, VR512, v16i32, sub_xmm>; | |
172 defm : subvector_subreg_lowering<VR128, v4f32, VR512, v16f32, sub_xmm>; | |
173 defm : subvector_subreg_lowering<VR128, v2i64, VR512, v8i64, sub_xmm>; | |
174 defm : subvector_subreg_lowering<VR128, v2f64, VR512, v8f64, sub_xmm>; | |
175 defm : subvector_subreg_lowering<VR128, v8i16, VR512, v32i16, sub_xmm>; | |
176 defm : subvector_subreg_lowering<VR128, v16i8, VR512, v64i8, sub_xmm>; | |
177 | |
178 // A 128-bit subvector extract from the first 512-bit vector position is a | |
179 // subregister copy that needs no instruction. Likewise, a 128-bit subvector | |
180 // insert to the first 512-bit vector position is a subregister copy that needs | |
181 // no instruction. | |
182 defm : subvector_subreg_lowering<VR256, v8i32, VR512, v16i32, sub_ymm>; | |
183 defm : subvector_subreg_lowering<VR256, v8f32, VR512, v16f32, sub_ymm>; | |
184 defm : subvector_subreg_lowering<VR256, v4i64, VR512, v8i64, sub_ymm>; | |
185 defm : subvector_subreg_lowering<VR256, v4f64, VR512, v8f64, sub_ymm>; | |
186 defm : subvector_subreg_lowering<VR256, v16i16, VR512, v32i16, sub_ymm>; | |
187 defm : subvector_subreg_lowering<VR256, v32i8, VR512, v64i8, sub_ymm>; | |
188 | |
189 | |
190 multiclass subvector_store_lowering<string AlignedStr, string UnalignedStr, | |
191 RegisterClass RC, ValueType DstTy, | |
192 ValueType SrcTy, SubRegIndex SubIdx> { | |
193 def : Pat<(alignedstore (DstTy (extract_subvector | |
194 (SrcTy RC:$src), (iPTR 0))), addr:$dst), | |
195 (!cast<Instruction>("VMOV"#AlignedStr#"mr") addr:$dst, | |
196 (DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>; | |
197 | |
198 def : Pat<(store (DstTy (extract_subvector | |
199 (SrcTy RC:$src), (iPTR 0))), addr:$dst), | |
200 (!cast<Instruction>("VMOV"#UnalignedStr#"mr") addr:$dst, | |
201 (DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>; | |
202 } | |
203 | |
204 let Predicates = [HasAVX, NoVLX] in { | |
205 defm : subvector_store_lowering<"APD", "UPD", VR256X, v2f64, v4f64, sub_xmm>; | |
206 defm : subvector_store_lowering<"APS", "UPS", VR256X, v4f32, v8f32, sub_xmm>; | |
207 defm : subvector_store_lowering<"DQA", "DQU", VR256X, v2i64, v4i64, sub_xmm>; | |
208 defm : subvector_store_lowering<"DQA", "DQU", VR256X, v4i32, v8i32, sub_xmm>; | |
209 defm : subvector_store_lowering<"DQA", "DQU", VR256X, v8i16, v16i16, sub_xmm>; | |
210 defm : subvector_store_lowering<"DQA", "DQU", VR256X, v16i8, v32i8, sub_xmm>; | |
211 } | |
212 | |
213 let Predicates = [HasVLX] in { | |
214 // Special patterns for storing subvector extracts of lower 128-bits | |
215 // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr | |
216 defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR256X, v2f64, v4f64, | |
217 sub_xmm>; | |
218 defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR256X, v4f32, v8f32, | |
219 sub_xmm>; | |
220 defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v2i64, | |
221 v4i64, sub_xmm>; | |
222 defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v4i32, | |
223 v8i32, sub_xmm>; | |
224 defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v8i16, | |
225 v16i16, sub_xmm>; | |
226 defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v16i8, | |
227 v32i8, sub_xmm>; | |
228 | |
229 // Special patterns for storing subvector extracts of lower 128-bits of 512. | |
230 // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr | |
231 defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR512, v2f64, v8f64, | |
232 sub_xmm>; | |
233 defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR512, v4f32, v16f32, | |
234 sub_xmm>; | |
235 defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v2i64, | |
236 v8i64, sub_xmm>; | |
237 defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v4i32, | |
238 v16i32, sub_xmm>; | |
239 defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v8i16, | |
240 v32i16, sub_xmm>; | |
241 defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v16i8, | |
242 v64i8, sub_xmm>; | |
243 | |
244 // Special patterns for storing subvector extracts of lower 256-bits of 512. | |
245 // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr | |
246 defm : subvector_store_lowering<"APDZ256", "UPDZ256", VR512, v4f64, v8f64, | |
247 sub_ymm>; | |
248 defm : subvector_store_lowering<"APSZ256", "UPSZ256", VR512, v8f32, v16f32, | |
249 sub_ymm>; | |
250 defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v4i64, | |
251 v8i64, sub_ymm>; | |
252 defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v8i32, | |
253 v16i32, sub_ymm>; | |
254 defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v16i16, | |
255 v32i16, sub_ymm>; | |
256 defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v32i8, | |
257 v64i8, sub_ymm>; | |
258 } | |
259 | |
260 // If we're inserting into an all zeros vector, just use a plain move which | |
261 // will zero the upper bits. | |
262 // TODO: Is there a safe way to detect whether the producing instruction | |
263 // already zeroed the upper bits? | |
264 multiclass subvector_zero_lowering<string MoveStr, RegisterClass RC, | |
265 ValueType DstTy, ValueType SrcTy, | |
266 ValueType ZeroTy, PatFrag memop, | |
267 SubRegIndex SubIdx> { | |
268 def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)), | |
269 (SrcTy RC:$src), (iPTR 0))), | |
270 (SUBREG_TO_REG (i64 0), | |
271 (!cast<Instruction>("VMOV"#MoveStr#"rr") RC:$src), SubIdx)>; | |
272 | |
273 def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)), | |
274 (SrcTy (bitconvert (memop addr:$src))), | |
275 (iPTR 0))), | |
276 (SUBREG_TO_REG (i64 0), | |
277 (!cast<Instruction>("VMOV"#MoveStr#"rm") addr:$src), SubIdx)>; | |
278 } | |
279 | |
280 let Predicates = [HasAVX, NoVLX] in { | |
281 defm : subvector_zero_lowering<"APD", VR128, v4f64, v2f64, v8i32, loadv2f64, | |
282 sub_xmm>; | |
283 defm : subvector_zero_lowering<"APS", VR128, v8f32, v4f32, v8i32, loadv4f32, | |
284 sub_xmm>; | |
285 defm : subvector_zero_lowering<"DQA", VR128, v4i64, v2i64, v8i32, loadv2i64, | |
286 sub_xmm>; | |
287 defm : subvector_zero_lowering<"DQA", VR128, v8i32, v4i32, v8i32, loadv2i64, | |
288 sub_xmm>; | |
289 defm : subvector_zero_lowering<"DQA", VR128, v16i16, v8i16, v8i32, loadv2i64, | |
290 sub_xmm>; | |
291 defm : subvector_zero_lowering<"DQA", VR128, v32i8, v16i8, v8i32, loadv2i64, | |
292 sub_xmm>; | |
293 } | |
294 | |
295 let Predicates = [HasVLX] in { | |
296 defm : subvector_zero_lowering<"APDZ128", VR128X, v4f64, v2f64, v8i32, | |
297 loadv2f64, sub_xmm>; | |
298 defm : subvector_zero_lowering<"APSZ128", VR128X, v8f32, v4f32, v8i32, | |
299 loadv4f32, sub_xmm>; | |
300 defm : subvector_zero_lowering<"DQA64Z128", VR128X, v4i64, v2i64, v8i32, | |
301 loadv2i64, sub_xmm>; | |
302 defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i32, v4i32, v8i32, | |
303 loadv2i64, sub_xmm>; | |
304 defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i16, v8i16, v8i32, | |
305 loadv2i64, sub_xmm>; | |
306 defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i8, v16i8, v8i32, | |
307 loadv2i64, sub_xmm>; | |
308 | |
309 defm : subvector_zero_lowering<"APDZ128", VR128X, v8f64, v2f64, v16i32, | |
310 loadv2f64, sub_xmm>; | |
311 defm : subvector_zero_lowering<"APSZ128", VR128X, v16f32, v4f32, v16i32, | |
312 loadv4f32, sub_xmm>; | |
313 defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i64, v2i64, v16i32, | |
314 loadv2i64, sub_xmm>; | |
315 defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i32, v4i32, v16i32, | |
316 loadv2i64, sub_xmm>; | |
317 defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i16, v8i16, v16i32, | |
318 loadv2i64, sub_xmm>; | |
319 defm : subvector_zero_lowering<"DQA64Z128", VR128X, v64i8, v16i8, v16i32, | |
320 loadv2i64, sub_xmm>; | |
321 | |
322 defm : subvector_zero_lowering<"APDZ256", VR256X, v8f64, v4f64, v16i32, | |
323 loadv4f64, sub_ymm>; | |
324 defm : subvector_zero_lowering<"APSZ256", VR256X, v16f32, v8f32, v16i32, | |
325 loadv8f32, sub_ymm>; | |
326 defm : subvector_zero_lowering<"DQA64Z256", VR256X, v8i64, v4i64, v16i32, | |
327 loadv4i64, sub_ymm>; | |
328 defm : subvector_zero_lowering<"DQA64Z256", VR256X, v16i32, v8i32, v16i32, | |
329 loadv4i64, sub_ymm>; | |
330 defm : subvector_zero_lowering<"DQA64Z256", VR256X, v32i16, v16i16, v16i32, | |
331 loadv4i64, sub_ymm>; | |
332 defm : subvector_zero_lowering<"DQA64Z256", VR256X, v64i8, v32i8, v16i32, | |
333 loadv4i64, sub_ymm>; | |
334 } | |
335 | |
336 let Predicates = [HasAVX512, NoVLX] in { | |
337 defm : subvector_zero_lowering<"APD", VR128, v8f64, v2f64, v16i32, loadv2f64, | |
338 sub_xmm>; | |
339 defm : subvector_zero_lowering<"APS", VR128, v16f32, v4f32, v16i32, loadv4f32, | |
340 sub_xmm>; | |
341 defm : subvector_zero_lowering<"DQA", VR128, v8i64, v2i64, v16i32, loadv2i64, | |
342 sub_xmm>; | |
343 defm : subvector_zero_lowering<"DQA", VR128, v16i32, v4i32, v16i32, loadv2i64, | |
344 sub_xmm>; | |
345 defm : subvector_zero_lowering<"DQA", VR128, v32i16, v8i16, v16i32, loadv2i64, | |
346 sub_xmm>; | |
347 defm : subvector_zero_lowering<"DQA", VR128, v64i8, v16i8, v16i32, loadv2i64, | |
348 sub_xmm>; | |
349 | |
350 defm : subvector_zero_lowering<"APDY", VR256, v8f64, v4f64, v16i32, | |
351 loadv4f64, sub_ymm>; | |
352 defm : subvector_zero_lowering<"APSY", VR256, v16f32, v8f32, v16i32, | |
353 loadv8f32, sub_ymm>; | |
354 defm : subvector_zero_lowering<"DQAY", VR256, v8i64, v4i64, v16i32, | |
355 loadv4i64, sub_ymm>; | |
356 defm : subvector_zero_lowering<"DQAY", VR256, v16i32, v8i32, v16i32, | |
357 loadv4i64, sub_ymm>; | |
358 defm : subvector_zero_lowering<"DQAY", VR256, v32i16, v16i16, v16i32, | |
359 loadv4i64, sub_ymm>; | |
360 defm : subvector_zero_lowering<"DQAY", VR256, v64i8, v32i8, v16i32, | |
361 loadv4i64, sub_ymm>; | |
362 } | |
363 | |
364 // List of opcodes that guaranteed to zero the upper elements of vector regs. | |
365 // TODO: Ideally this would be a blacklist instead of a whitelist. But SHA | |
366 // intrinsics and some MMX->XMM move instructions that aren't VEX encoded make | |
367 // this difficult. So starting with a couple opcodes used by reduction loops | |
368 // where we explicitly insert zeros. | |
369 class veczeroupper<ValueType vt, RegisterClass RC> : | |
370 PatLeaf<(vt RC:$src), [{ | |
371 return N->getOpcode() == X86ISD::VPMADDWD || | |
372 N->getOpcode() == X86ISD::PSADBW; | |
373 }]>; | |
374 | |
375 def zeroupperv2f64 : veczeroupper<v2f64, VR128>; | |
376 def zeroupperv4f32 : veczeroupper<v4f32, VR128>; | |
377 def zeroupperv2i64 : veczeroupper<v2i64, VR128>; | |
378 def zeroupperv4i32 : veczeroupper<v4i32, VR128>; | |
379 def zeroupperv8i16 : veczeroupper<v8i16, VR128>; | |
380 def zeroupperv16i8 : veczeroupper<v16i8, VR128>; | |
381 | |
382 def zeroupperv4f64 : veczeroupper<v4f64, VR256>; | |
383 def zeroupperv8f32 : veczeroupper<v8f32, VR256>; | |
384 def zeroupperv4i64 : veczeroupper<v4i64, VR256>; | |
385 def zeroupperv8i32 : veczeroupper<v8i32, VR256>; | |
386 def zeroupperv16i16 : veczeroupper<v16i16, VR256>; | |
387 def zeroupperv32i8 : veczeroupper<v32i8, VR256>; | |
388 | |
389 | |
390 // If we can guarantee the upper elements have already been zeroed we can elide | |
391 // an explicit zeroing. | |
392 multiclass subvector_zero_ellision<RegisterClass RC, ValueType DstTy, | |
393 ValueType SrcTy, ValueType ZeroTy, | |
394 SubRegIndex SubIdx, PatLeaf Zeroupper> { | |
395 def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)), | |
396 Zeroupper:$src, (iPTR 0))), | |
397 (SUBREG_TO_REG (i64 0), RC:$src, SubIdx)>; | |
398 } | |
399 | |
400 // 128->256 | |
401 defm: subvector_zero_ellision<VR128, v4f64, v2f64, v8i32, sub_xmm, zeroupperv2f64>; | |
402 defm: subvector_zero_ellision<VR128, v8f32, v4f32, v8i32, sub_xmm, zeroupperv4f32>; | |
403 defm: subvector_zero_ellision<VR128, v4i64, v2i64, v8i32, sub_xmm, zeroupperv2i64>; | |
404 defm: subvector_zero_ellision<VR128, v8i32, v4i32, v8i32, sub_xmm, zeroupperv4i32>; | |
405 defm: subvector_zero_ellision<VR128, v16i16, v8i16, v8i32, sub_xmm, zeroupperv8i16>; | |
406 defm: subvector_zero_ellision<VR128, v32i8, v16i8, v8i32, sub_xmm, zeroupperv16i8>; | |
407 | |
408 // 128->512 | |
409 defm: subvector_zero_ellision<VR128, v8f64, v2f64, v16i32, sub_xmm, zeroupperv2f64>; | |
410 defm: subvector_zero_ellision<VR128, v16f32, v4f32, v16i32, sub_xmm, zeroupperv4f32>; | |
411 defm: subvector_zero_ellision<VR128, v8i64, v2i64, v16i32, sub_xmm, zeroupperv2i64>; | |
412 defm: subvector_zero_ellision<VR128, v16i32, v4i32, v16i32, sub_xmm, zeroupperv4i32>; | |
413 defm: subvector_zero_ellision<VR128, v32i16, v8i16, v16i32, sub_xmm, zeroupperv8i16>; | |
414 defm: subvector_zero_ellision<VR128, v64i8, v16i8, v16i32, sub_xmm, zeroupperv16i8>; | |
415 | |
416 // 256->512 | |
417 defm: subvector_zero_ellision<VR256, v8f64, v4f64, v16i32, sub_ymm, zeroupperv4f64>; | |
418 defm: subvector_zero_ellision<VR256, v16f32, v8f32, v16i32, sub_ymm, zeroupperv8f32>; | |
419 defm: subvector_zero_ellision<VR256, v8i64, v4i64, v16i32, sub_ymm, zeroupperv4i64>; | |
420 defm: subvector_zero_ellision<VR256, v16i32, v8i32, v16i32, sub_ymm, zeroupperv8i32>; | |
421 defm: subvector_zero_ellision<VR256, v32i16, v16i16, v16i32, sub_ymm, zeroupperv16i16>; | |
422 defm: subvector_zero_ellision<VR256, v64i8, v32i8, v16i32, sub_ymm, zeroupperv32i8>; | |
423 | |
424 | |
425 class maskzeroupper<ValueType vt, RegisterClass RC> : | |
426 PatLeaf<(vt RC:$src), [{ | |
427 return isMaskZeroExtended(N); | |
428 }]>; | |
429 | |
430 def maskzeroupperv2i1 : maskzeroupper<v2i1, VK2>; | |
431 def maskzeroupperv4i1 : maskzeroupper<v4i1, VK4>; | |
432 def maskzeroupperv8i1 : maskzeroupper<v8i1, VK8>; | |
433 def maskzeroupperv16i1 : maskzeroupper<v16i1, VK16>; | |
434 def maskzeroupperv32i1 : maskzeroupper<v32i1, VK32>; | |
435 | |
436 // The patterns determine if we can depend on the upper bits of a mask register | |
437 // being zeroed by the previous operation so that we can skip explicit | |
438 // zeroing. | |
439 let Predicates = [HasBWI] in { | |
440 def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), | |
441 maskzeroupperv8i1:$src, (iPTR 0))), | |
442 (COPY_TO_REGCLASS VK8:$src, VK32)>; | |
443 def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), | |
444 maskzeroupperv16i1:$src, (iPTR 0))), | |
445 (COPY_TO_REGCLASS VK16:$src, VK32)>; | |
446 def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), | |
447 maskzeroupperv8i1:$src, (iPTR 0))), | |
448 (COPY_TO_REGCLASS VK8:$src, VK64)>; | |
449 def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), | |
450 maskzeroupperv16i1:$src, (iPTR 0))), | |
451 (COPY_TO_REGCLASS VK16:$src, VK64)>; | |
452 def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), | |
453 maskzeroupperv32i1:$src, (iPTR 0))), | |
454 (COPY_TO_REGCLASS VK32:$src, VK64)>; | |
455 } | |
456 | |
457 let Predicates = [HasAVX512] in { | |
458 def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), | |
459 maskzeroupperv8i1:$src, (iPTR 0))), | |
460 (COPY_TO_REGCLASS VK8:$src, VK16)>; | |
461 } | |
462 | |
463 let Predicates = [HasVLX] in { | |
464 def : Pat<(v4i1 (insert_subvector (v4i1 immAllZerosV), | |
465 maskzeroupperv2i1:$src, (iPTR 0))), | |
466 (COPY_TO_REGCLASS VK2:$src, VK4)>; | |
467 def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV), | |
468 maskzeroupperv2i1:$src, (iPTR 0))), | |
469 (COPY_TO_REGCLASS VK2:$src, VK8)>; | |
470 def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV), | |
471 maskzeroupperv4i1:$src, (iPTR 0))), | |
472 (COPY_TO_REGCLASS VK4:$src, VK8)>; | |
473 def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), | |
474 maskzeroupperv2i1:$src, (iPTR 0))), | |
475 (COPY_TO_REGCLASS VK2:$src, VK16)>; | |
476 def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), | |
477 maskzeroupperv4i1:$src, (iPTR 0))), | |
478 (COPY_TO_REGCLASS VK4:$src, VK16)>; | |
479 } | |
480 | |
481 let Predicates = [HasBWI, HasVLX] in { | |
482 def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), | |
483 maskzeroupperv2i1:$src, (iPTR 0))), | |
484 (COPY_TO_REGCLASS VK2:$src, VK32)>; | |
485 def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), | |
486 maskzeroupperv4i1:$src, (iPTR 0))), | |
487 (COPY_TO_REGCLASS VK4:$src, VK32)>; | |
488 def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), | |
489 maskzeroupperv2i1:$src, (iPTR 0))), | |
490 (COPY_TO_REGCLASS VK2:$src, VK64)>; | |
491 def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), | |
492 maskzeroupperv4i1:$src, (iPTR 0))), | |
493 (COPY_TO_REGCLASS VK4:$src, VK64)>; | |
494 } | |
495 | |
496 // If the bits are not zero we have to fall back to explicitly zeroing by | |
497 // using shifts. | |
498 let Predicates = [HasAVX512, NoVLX] in { | |
499 def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), | |
500 (v8i1 VK8:$mask), (iPTR 0))), | |
501 (KSHIFTRWri (KSHIFTLWri (COPY_TO_REGCLASS VK8:$mask, VK16), | |
502 (i8 8)), (i8 8))>; | |
503 } |