Mercurial > hg > Members > tobaru > cbc > CbC_llvm
diff lib/Target/X86/X86InstrVecCompiler.td @ 121:803732b1fca8
LLVM 5.0
author | kono |
---|---|
date | Fri, 27 Oct 2017 17:07:41 +0900 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Target/X86/X86InstrVecCompiler.td Fri Oct 27 17:07:41 2017 +0900 @@ -0,0 +1,503 @@ +//===- X86InstrVecCompiler.td - Vector Compiler Patterns ---*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the various vector pseudo instructions used by the +// compiler, as well as Pat patterns used during instruction selection. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// No op bitconverts +//===----------------------------------------------------------------------===// + +// Bitcasts between 128-bit vector types. Return the original type since +// no instruction is needed for the conversion +def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; +def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; +def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; +def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; +def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; +def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; +def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; +def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; +def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; +def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; +def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; +def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; +def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; +def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; +def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; +def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; +def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; +def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; +def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; +def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; +def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; +def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; +def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; +def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; +def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; +def : Pat<(f128 (bitconvert (i128 FR128:$src))), (f128 FR128:$src)>; +def : Pat<(i128 (bitconvert (f128 FR128:$src))), (i128 FR128:$src)>; + +// Bitcasts between 256-bit vector types. Return the original type since +// no instruction is needed for the conversion +def : Pat<(v4i64 (bitconvert (v8i32 VR256:$src))), (v4i64 VR256:$src)>; +def : Pat<(v4i64 (bitconvert (v16i16 VR256:$src))), (v4i64 VR256:$src)>; +def : Pat<(v4i64 (bitconvert (v32i8 VR256:$src))), (v4i64 VR256:$src)>; +def : Pat<(v4i64 (bitconvert (v8f32 VR256:$src))), (v4i64 VR256:$src)>; +def : Pat<(v4i64 (bitconvert (v4f64 VR256:$src))), (v4i64 VR256:$src)>; +def : Pat<(v8i32 (bitconvert (v4i64 VR256:$src))), (v8i32 VR256:$src)>; +def : Pat<(v8i32 (bitconvert (v16i16 VR256:$src))), (v8i32 VR256:$src)>; +def : Pat<(v8i32 (bitconvert (v32i8 VR256:$src))), (v8i32 VR256:$src)>; +def : Pat<(v8i32 (bitconvert (v4f64 VR256:$src))), (v8i32 VR256:$src)>; +def : Pat<(v8i32 (bitconvert (v8f32 VR256:$src))), (v8i32 VR256:$src)>; +def : Pat<(v16i16 (bitconvert (v4i64 VR256:$src))), (v16i16 VR256:$src)>; +def : Pat<(v16i16 (bitconvert (v8i32 VR256:$src))), (v16i16 VR256:$src)>; +def : Pat<(v16i16 (bitconvert (v32i8 VR256:$src))), (v16i16 VR256:$src)>; +def : Pat<(v16i16 (bitconvert (v4f64 VR256:$src))), (v16i16 VR256:$src)>; +def : Pat<(v16i16 (bitconvert (v8f32 VR256:$src))), (v16i16 VR256:$src)>; +def : Pat<(v32i8 (bitconvert (v4i64 VR256:$src))), (v32i8 VR256:$src)>; +def : Pat<(v32i8 (bitconvert (v8i32 VR256:$src))), (v32i8 VR256:$src)>; +def : Pat<(v32i8 (bitconvert (v16i16 VR256:$src))), (v32i8 VR256:$src)>; +def : Pat<(v32i8 (bitconvert (v4f64 VR256:$src))), (v32i8 VR256:$src)>; +def : Pat<(v32i8 (bitconvert (v8f32 VR256:$src))), (v32i8 VR256:$src)>; +def : Pat<(v8f32 (bitconvert (v4i64 VR256:$src))), (v8f32 VR256:$src)>; +def : Pat<(v8f32 (bitconvert (v8i32 VR256:$src))), (v8f32 VR256:$src)>; +def : Pat<(v8f32 (bitconvert (v16i16 VR256:$src))), (v8f32 VR256:$src)>; +def : Pat<(v8f32 (bitconvert (v32i8 VR256:$src))), (v8f32 VR256:$src)>; +def : Pat<(v8f32 (bitconvert (v4f64 VR256:$src))), (v8f32 VR256:$src)>; +def : Pat<(v4f64 (bitconvert (v4i64 VR256:$src))), (v4f64 VR256:$src)>; +def : Pat<(v4f64 (bitconvert (v8i32 VR256:$src))), (v4f64 VR256:$src)>; +def : Pat<(v4f64 (bitconvert (v16i16 VR256:$src))), (v4f64 VR256:$src)>; +def : Pat<(v4f64 (bitconvert (v32i8 VR256:$src))), (v4f64 VR256:$src)>; +def : Pat<(v4f64 (bitconvert (v8f32 VR256:$src))), (v4f64 VR256:$src)>; + +// Bitcasts between 512-bit vector types. Return the original type since +// no instruction is needed for the conversion. +def : Pat<(v8f64 (bitconvert (v8i64 VR512:$src))), (v8f64 VR512:$src)>; +def : Pat<(v8f64 (bitconvert (v16i32 VR512:$src))), (v8f64 VR512:$src)>; +def : Pat<(v8f64 (bitconvert (v32i16 VR512:$src))), (v8f64 VR512:$src)>; +def : Pat<(v8f64 (bitconvert (v64i8 VR512:$src))), (v8f64 VR512:$src)>; +def : Pat<(v8f64 (bitconvert (v16f32 VR512:$src))), (v8f64 VR512:$src)>; +def : Pat<(v16f32 (bitconvert (v8i64 VR512:$src))), (v16f32 VR512:$src)>; +def : Pat<(v16f32 (bitconvert (v16i32 VR512:$src))), (v16f32 VR512:$src)>; +def : Pat<(v16f32 (bitconvert (v32i16 VR512:$src))), (v16f32 VR512:$src)>; +def : Pat<(v16f32 (bitconvert (v64i8 VR512:$src))), (v16f32 VR512:$src)>; +def : Pat<(v16f32 (bitconvert (v8f64 VR512:$src))), (v16f32 VR512:$src)>; +def : Pat<(v8i64 (bitconvert (v16i32 VR512:$src))), (v8i64 VR512:$src)>; +def : Pat<(v8i64 (bitconvert (v32i16 VR512:$src))), (v8i64 VR512:$src)>; +def : Pat<(v8i64 (bitconvert (v64i8 VR512:$src))), (v8i64 VR512:$src)>; +def : Pat<(v8i64 (bitconvert (v8f64 VR512:$src))), (v8i64 VR512:$src)>; +def : Pat<(v8i64 (bitconvert (v16f32 VR512:$src))), (v8i64 VR512:$src)>; +def : Pat<(v16i32 (bitconvert (v8i64 VR512:$src))), (v16i32 VR512:$src)>; +def : Pat<(v16i32 (bitconvert (v16f32 VR512:$src))), (v16i32 VR512:$src)>; +def : Pat<(v16i32 (bitconvert (v32i16 VR512:$src))), (v16i32 VR512:$src)>; +def : Pat<(v16i32 (bitconvert (v64i8 VR512:$src))), (v16i32 VR512:$src)>; +def : Pat<(v16i32 (bitconvert (v8f64 VR512:$src))), (v16i32 VR512:$src)>; +def : Pat<(v32i16 (bitconvert (v8i64 VR512:$src))), (v32i16 VR512:$src)>; +def : Pat<(v32i16 (bitconvert (v16i32 VR512:$src))), (v32i16 VR512:$src)>; +def : Pat<(v32i16 (bitconvert (v64i8 VR512:$src))), (v32i16 VR512:$src)>; +def : Pat<(v32i16 (bitconvert (v8f64 VR512:$src))), (v32i16 VR512:$src)>; +def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>; +def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>; +def : Pat<(v64i8 (bitconvert (v8i64 VR512:$src))), (v64i8 VR512:$src)>; +def : Pat<(v64i8 (bitconvert (v16i32 VR512:$src))), (v64i8 VR512:$src)>; +def : Pat<(v64i8 (bitconvert (v32i16 VR512:$src))), (v64i8 VR512:$src)>; +def : Pat<(v64i8 (bitconvert (v8f64 VR512:$src))), (v64i8 VR512:$src)>; +def : Pat<(v64i8 (bitconvert (v16f32 VR512:$src))), (v64i8 VR512:$src)>; + + +//===----------------------------------------------------------------------===// +// Non-instruction patterns +//===----------------------------------------------------------------------===// + +// A vector extract of the first f32/f64 position is a subregister copy +def : Pat<(f32 (extractelt (v4f32 VR128:$src), (iPTR 0))), + (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32)>; +def : Pat<(f64 (extractelt (v2f64 VR128:$src), (iPTR 0))), + (COPY_TO_REGCLASS (v2f64 VR128:$src), FR64)>; + +// Implicitly promote a 32-bit scalar to a vector. +def : Pat<(v4f32 (scalar_to_vector FR32:$src)), + (COPY_TO_REGCLASS FR32:$src, VR128)>; +// Implicitly promote a 64-bit scalar to a vector. +def : Pat<(v2f64 (scalar_to_vector FR64:$src)), + (COPY_TO_REGCLASS FR64:$src, VR128)>; + + +//===----------------------------------------------------------------------===// +// Subvector tricks +//===----------------------------------------------------------------------===// + +// Patterns for insert_subvector/extract_subvector to/from index=0 +multiclass subvector_subreg_lowering<RegisterClass subRC, ValueType subVT, + RegisterClass RC, ValueType VT, + SubRegIndex subIdx> { + def : Pat<(subVT (extract_subvector (VT RC:$src), (iPTR 0))), + (subVT (EXTRACT_SUBREG RC:$src, subIdx))>; + + let AddedComplexity = 25 in // to give priority over vinsertf128rm + def : Pat<(VT (insert_subvector undef, subRC:$src, (iPTR 0))), + (VT (INSERT_SUBREG (IMPLICIT_DEF), subRC:$src, subIdx))>; +} + +// A 128-bit subvector extract from the first 256-bit vector position is a +// subregister copy that needs no instruction. Likewise, a 128-bit subvector +// insert to the first 256-bit vector position is a subregister copy that needs +// no instruction. +defm : subvector_subreg_lowering<VR128, v4i32, VR256, v8i32, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v4f32, VR256, v8f32, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v2i64, VR256, v4i64, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v2f64, VR256, v4f64, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v8i16, VR256, v16i16, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v16i8, VR256, v32i8, sub_xmm>; + +// A 128-bit subvector extract from the first 512-bit vector position is a +// subregister copy that needs no instruction. Likewise, a 128-bit subvector +// insert to the first 512-bit vector position is a subregister copy that needs +// no instruction. +defm : subvector_subreg_lowering<VR128, v4i32, VR512, v16i32, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v4f32, VR512, v16f32, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v2i64, VR512, v8i64, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v2f64, VR512, v8f64, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v8i16, VR512, v32i16, sub_xmm>; +defm : subvector_subreg_lowering<VR128, v16i8, VR512, v64i8, sub_xmm>; + +// A 128-bit subvector extract from the first 512-bit vector position is a +// subregister copy that needs no instruction. Likewise, a 128-bit subvector +// insert to the first 512-bit vector position is a subregister copy that needs +// no instruction. +defm : subvector_subreg_lowering<VR256, v8i32, VR512, v16i32, sub_ymm>; +defm : subvector_subreg_lowering<VR256, v8f32, VR512, v16f32, sub_ymm>; +defm : subvector_subreg_lowering<VR256, v4i64, VR512, v8i64, sub_ymm>; +defm : subvector_subreg_lowering<VR256, v4f64, VR512, v8f64, sub_ymm>; +defm : subvector_subreg_lowering<VR256, v16i16, VR512, v32i16, sub_ymm>; +defm : subvector_subreg_lowering<VR256, v32i8, VR512, v64i8, sub_ymm>; + + +multiclass subvector_store_lowering<string AlignedStr, string UnalignedStr, + RegisterClass RC, ValueType DstTy, + ValueType SrcTy, SubRegIndex SubIdx> { + def : Pat<(alignedstore (DstTy (extract_subvector + (SrcTy RC:$src), (iPTR 0))), addr:$dst), + (!cast<Instruction>("VMOV"#AlignedStr#"mr") addr:$dst, + (DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>; + + def : Pat<(store (DstTy (extract_subvector + (SrcTy RC:$src), (iPTR 0))), addr:$dst), + (!cast<Instruction>("VMOV"#UnalignedStr#"mr") addr:$dst, + (DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>; +} + +let Predicates = [HasAVX, NoVLX] in { + defm : subvector_store_lowering<"APD", "UPD", VR256X, v2f64, v4f64, sub_xmm>; + defm : subvector_store_lowering<"APS", "UPS", VR256X, v4f32, v8f32, sub_xmm>; + defm : subvector_store_lowering<"DQA", "DQU", VR256X, v2i64, v4i64, sub_xmm>; + defm : subvector_store_lowering<"DQA", "DQU", VR256X, v4i32, v8i32, sub_xmm>; + defm : subvector_store_lowering<"DQA", "DQU", VR256X, v8i16, v16i16, sub_xmm>; + defm : subvector_store_lowering<"DQA", "DQU", VR256X, v16i8, v32i8, sub_xmm>; +} + +let Predicates = [HasVLX] in { + // Special patterns for storing subvector extracts of lower 128-bits + // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr + defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR256X, v2f64, v4f64, + sub_xmm>; + defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR256X, v4f32, v8f32, + sub_xmm>; + defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v2i64, + v4i64, sub_xmm>; + defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v4i32, + v8i32, sub_xmm>; + defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v8i16, + v16i16, sub_xmm>; + defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v16i8, + v32i8, sub_xmm>; + + // Special patterns for storing subvector extracts of lower 128-bits of 512. + // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr + defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR512, v2f64, v8f64, + sub_xmm>; + defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR512, v4f32, v16f32, + sub_xmm>; + defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v2i64, + v8i64, sub_xmm>; + defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v4i32, + v16i32, sub_xmm>; + defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v8i16, + v32i16, sub_xmm>; + defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v16i8, + v64i8, sub_xmm>; + + // Special patterns for storing subvector extracts of lower 256-bits of 512. + // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr + defm : subvector_store_lowering<"APDZ256", "UPDZ256", VR512, v4f64, v8f64, + sub_ymm>; + defm : subvector_store_lowering<"APSZ256", "UPSZ256", VR512, v8f32, v16f32, + sub_ymm>; + defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v4i64, + v8i64, sub_ymm>; + defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v8i32, + v16i32, sub_ymm>; + defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v16i16, + v32i16, sub_ymm>; + defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v32i8, + v64i8, sub_ymm>; +} + +// If we're inserting into an all zeros vector, just use a plain move which +// will zero the upper bits. +// TODO: Is there a safe way to detect whether the producing instruction +// already zeroed the upper bits? +multiclass subvector_zero_lowering<string MoveStr, RegisterClass RC, + ValueType DstTy, ValueType SrcTy, + ValueType ZeroTy, PatFrag memop, + SubRegIndex SubIdx> { + def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)), + (SrcTy RC:$src), (iPTR 0))), + (SUBREG_TO_REG (i64 0), + (!cast<Instruction>("VMOV"#MoveStr#"rr") RC:$src), SubIdx)>; + + def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)), + (SrcTy (bitconvert (memop addr:$src))), + (iPTR 0))), + (SUBREG_TO_REG (i64 0), + (!cast<Instruction>("VMOV"#MoveStr#"rm") addr:$src), SubIdx)>; +} + +let Predicates = [HasAVX, NoVLX] in { + defm : subvector_zero_lowering<"APD", VR128, v4f64, v2f64, v8i32, loadv2f64, + sub_xmm>; + defm : subvector_zero_lowering<"APS", VR128, v8f32, v4f32, v8i32, loadv4f32, + sub_xmm>; + defm : subvector_zero_lowering<"DQA", VR128, v4i64, v2i64, v8i32, loadv2i64, + sub_xmm>; + defm : subvector_zero_lowering<"DQA", VR128, v8i32, v4i32, v8i32, loadv2i64, + sub_xmm>; + defm : subvector_zero_lowering<"DQA", VR128, v16i16, v8i16, v8i32, loadv2i64, + sub_xmm>; + defm : subvector_zero_lowering<"DQA", VR128, v32i8, v16i8, v8i32, loadv2i64, + sub_xmm>; +} + +let Predicates = [HasVLX] in { + defm : subvector_zero_lowering<"APDZ128", VR128X, v4f64, v2f64, v8i32, + loadv2f64, sub_xmm>; + defm : subvector_zero_lowering<"APSZ128", VR128X, v8f32, v4f32, v8i32, + loadv4f32, sub_xmm>; + defm : subvector_zero_lowering<"DQA64Z128", VR128X, v4i64, v2i64, v8i32, + loadv2i64, sub_xmm>; + defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i32, v4i32, v8i32, + loadv2i64, sub_xmm>; + defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i16, v8i16, v8i32, + loadv2i64, sub_xmm>; + defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i8, v16i8, v8i32, + loadv2i64, sub_xmm>; + + defm : subvector_zero_lowering<"APDZ128", VR128X, v8f64, v2f64, v16i32, + loadv2f64, sub_xmm>; + defm : subvector_zero_lowering<"APSZ128", VR128X, v16f32, v4f32, v16i32, + loadv4f32, sub_xmm>; + defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i64, v2i64, v16i32, + loadv2i64, sub_xmm>; + defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i32, v4i32, v16i32, + loadv2i64, sub_xmm>; + defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i16, v8i16, v16i32, + loadv2i64, sub_xmm>; + defm : subvector_zero_lowering<"DQA64Z128", VR128X, v64i8, v16i8, v16i32, + loadv2i64, sub_xmm>; + + defm : subvector_zero_lowering<"APDZ256", VR256X, v8f64, v4f64, v16i32, + loadv4f64, sub_ymm>; + defm : subvector_zero_lowering<"APSZ256", VR256X, v16f32, v8f32, v16i32, + loadv8f32, sub_ymm>; + defm : subvector_zero_lowering<"DQA64Z256", VR256X, v8i64, v4i64, v16i32, + loadv4i64, sub_ymm>; + defm : subvector_zero_lowering<"DQA64Z256", VR256X, v16i32, v8i32, v16i32, + loadv4i64, sub_ymm>; + defm : subvector_zero_lowering<"DQA64Z256", VR256X, v32i16, v16i16, v16i32, + loadv4i64, sub_ymm>; + defm : subvector_zero_lowering<"DQA64Z256", VR256X, v64i8, v32i8, v16i32, + loadv4i64, sub_ymm>; +} + +let Predicates = [HasAVX512, NoVLX] in { + defm : subvector_zero_lowering<"APD", VR128, v8f64, v2f64, v16i32, loadv2f64, + sub_xmm>; + defm : subvector_zero_lowering<"APS", VR128, v16f32, v4f32, v16i32, loadv4f32, + sub_xmm>; + defm : subvector_zero_lowering<"DQA", VR128, v8i64, v2i64, v16i32, loadv2i64, + sub_xmm>; + defm : subvector_zero_lowering<"DQA", VR128, v16i32, v4i32, v16i32, loadv2i64, + sub_xmm>; + defm : subvector_zero_lowering<"DQA", VR128, v32i16, v8i16, v16i32, loadv2i64, + sub_xmm>; + defm : subvector_zero_lowering<"DQA", VR128, v64i8, v16i8, v16i32, loadv2i64, + sub_xmm>; + + defm : subvector_zero_lowering<"APDY", VR256, v8f64, v4f64, v16i32, + loadv4f64, sub_ymm>; + defm : subvector_zero_lowering<"APSY", VR256, v16f32, v8f32, v16i32, + loadv8f32, sub_ymm>; + defm : subvector_zero_lowering<"DQAY", VR256, v8i64, v4i64, v16i32, + loadv4i64, sub_ymm>; + defm : subvector_zero_lowering<"DQAY", VR256, v16i32, v8i32, v16i32, + loadv4i64, sub_ymm>; + defm : subvector_zero_lowering<"DQAY", VR256, v32i16, v16i16, v16i32, + loadv4i64, sub_ymm>; + defm : subvector_zero_lowering<"DQAY", VR256, v64i8, v32i8, v16i32, + loadv4i64, sub_ymm>; +} + +// List of opcodes that guaranteed to zero the upper elements of vector regs. +// TODO: Ideally this would be a blacklist instead of a whitelist. But SHA +// intrinsics and some MMX->XMM move instructions that aren't VEX encoded make +// this difficult. So starting with a couple opcodes used by reduction loops +// where we explicitly insert zeros. +class veczeroupper<ValueType vt, RegisterClass RC> : + PatLeaf<(vt RC:$src), [{ + return N->getOpcode() == X86ISD::VPMADDWD || + N->getOpcode() == X86ISD::PSADBW; + }]>; + +def zeroupperv2f64 : veczeroupper<v2f64, VR128>; +def zeroupperv4f32 : veczeroupper<v4f32, VR128>; +def zeroupperv2i64 : veczeroupper<v2i64, VR128>; +def zeroupperv4i32 : veczeroupper<v4i32, VR128>; +def zeroupperv8i16 : veczeroupper<v8i16, VR128>; +def zeroupperv16i8 : veczeroupper<v16i8, VR128>; + +def zeroupperv4f64 : veczeroupper<v4f64, VR256>; +def zeroupperv8f32 : veczeroupper<v8f32, VR256>; +def zeroupperv4i64 : veczeroupper<v4i64, VR256>; +def zeroupperv8i32 : veczeroupper<v8i32, VR256>; +def zeroupperv16i16 : veczeroupper<v16i16, VR256>; +def zeroupperv32i8 : veczeroupper<v32i8, VR256>; + + +// If we can guarantee the upper elements have already been zeroed we can elide +// an explicit zeroing. +multiclass subvector_zero_ellision<RegisterClass RC, ValueType DstTy, + ValueType SrcTy, ValueType ZeroTy, + SubRegIndex SubIdx, PatLeaf Zeroupper> { + def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)), + Zeroupper:$src, (iPTR 0))), + (SUBREG_TO_REG (i64 0), RC:$src, SubIdx)>; +} + +// 128->256 +defm: subvector_zero_ellision<VR128, v4f64, v2f64, v8i32, sub_xmm, zeroupperv2f64>; +defm: subvector_zero_ellision<VR128, v8f32, v4f32, v8i32, sub_xmm, zeroupperv4f32>; +defm: subvector_zero_ellision<VR128, v4i64, v2i64, v8i32, sub_xmm, zeroupperv2i64>; +defm: subvector_zero_ellision<VR128, v8i32, v4i32, v8i32, sub_xmm, zeroupperv4i32>; +defm: subvector_zero_ellision<VR128, v16i16, v8i16, v8i32, sub_xmm, zeroupperv8i16>; +defm: subvector_zero_ellision<VR128, v32i8, v16i8, v8i32, sub_xmm, zeroupperv16i8>; + +// 128->512 +defm: subvector_zero_ellision<VR128, v8f64, v2f64, v16i32, sub_xmm, zeroupperv2f64>; +defm: subvector_zero_ellision<VR128, v16f32, v4f32, v16i32, sub_xmm, zeroupperv4f32>; +defm: subvector_zero_ellision<VR128, v8i64, v2i64, v16i32, sub_xmm, zeroupperv2i64>; +defm: subvector_zero_ellision<VR128, v16i32, v4i32, v16i32, sub_xmm, zeroupperv4i32>; +defm: subvector_zero_ellision<VR128, v32i16, v8i16, v16i32, sub_xmm, zeroupperv8i16>; +defm: subvector_zero_ellision<VR128, v64i8, v16i8, v16i32, sub_xmm, zeroupperv16i8>; + +// 256->512 +defm: subvector_zero_ellision<VR256, v8f64, v4f64, v16i32, sub_ymm, zeroupperv4f64>; +defm: subvector_zero_ellision<VR256, v16f32, v8f32, v16i32, sub_ymm, zeroupperv8f32>; +defm: subvector_zero_ellision<VR256, v8i64, v4i64, v16i32, sub_ymm, zeroupperv4i64>; +defm: subvector_zero_ellision<VR256, v16i32, v8i32, v16i32, sub_ymm, zeroupperv8i32>; +defm: subvector_zero_ellision<VR256, v32i16, v16i16, v16i32, sub_ymm, zeroupperv16i16>; +defm: subvector_zero_ellision<VR256, v64i8, v32i8, v16i32, sub_ymm, zeroupperv32i8>; + + +class maskzeroupper<ValueType vt, RegisterClass RC> : + PatLeaf<(vt RC:$src), [{ + return isMaskZeroExtended(N); + }]>; + +def maskzeroupperv2i1 : maskzeroupper<v2i1, VK2>; +def maskzeroupperv4i1 : maskzeroupper<v4i1, VK4>; +def maskzeroupperv8i1 : maskzeroupper<v8i1, VK8>; +def maskzeroupperv16i1 : maskzeroupper<v16i1, VK16>; +def maskzeroupperv32i1 : maskzeroupper<v32i1, VK32>; + +// The patterns determine if we can depend on the upper bits of a mask register +// being zeroed by the previous operation so that we can skip explicit +// zeroing. +let Predicates = [HasBWI] in { + def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), + maskzeroupperv8i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK8:$src, VK32)>; + def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), + maskzeroupperv16i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK16:$src, VK32)>; + def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), + maskzeroupperv8i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK8:$src, VK64)>; + def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), + maskzeroupperv16i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK16:$src, VK64)>; + def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), + maskzeroupperv32i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK32:$src, VK64)>; +} + +let Predicates = [HasAVX512] in { + def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), + maskzeroupperv8i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK8:$src, VK16)>; +} + +let Predicates = [HasVLX] in { + def : Pat<(v4i1 (insert_subvector (v4i1 immAllZerosV), + maskzeroupperv2i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK2:$src, VK4)>; + def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV), + maskzeroupperv2i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK2:$src, VK8)>; + def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV), + maskzeroupperv4i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK4:$src, VK8)>; + def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), + maskzeroupperv2i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK2:$src, VK16)>; + def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), + maskzeroupperv4i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK4:$src, VK16)>; +} + +let Predicates = [HasBWI, HasVLX] in { + def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), + maskzeroupperv2i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK2:$src, VK32)>; + def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), + maskzeroupperv4i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK4:$src, VK32)>; + def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), + maskzeroupperv2i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK2:$src, VK64)>; + def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), + maskzeroupperv4i1:$src, (iPTR 0))), + (COPY_TO_REGCLASS VK4:$src, VK64)>; +} + +// If the bits are not zero we have to fall back to explicitly zeroing by +// using shifts. +let Predicates = [HasAVX512, NoVLX] in { + def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), + (v8i1 VK8:$mask), (iPTR 0))), + (KSHIFTRWri (KSHIFTLWri (COPY_TO_REGCLASS VK8:$mask, VK16), + (i8 8)), (i8 8))>; +}