comparison paper/src/NatAddSym.agda @ 55:70bea06ebdf3

Add reasoning
author atton <atton@cr.ie.u-ryukyu.ac.jp>
date Tue, 31 Jan 2017 17:30:07 +0900
parents
children 10a550bf7e4a
comparison
equal deleted inserted replaced
54:ef9730f3db8d 55:70bea06ebdf3
1 open import Relation.Binary.PropositionalEquality
2 open import nat
3 open import nat_add
4 open ≡-Reasoning
5
6 module nat_add_sym where
7
8 addSym : (n m : Nat) -> n + m ≡ m + n
9 addSym O O = refl
10 addSym O (S m) = cong S (addSym O m)
11 addSym (S n) O = cong S (addSym n O)
12 addSym (S n) (S m) = {!!}
13
14