0
|
1 ;; ARM 1020E & ARM 1022E Pipeline Description
|
111
|
2 ;; Copyright (C) 2005-2017 Free Software Foundation, Inc.
|
0
|
3 ;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
|
|
4 ;;
|
|
5 ;; This file is part of GCC.
|
|
6 ;;
|
|
7 ;; GCC is free software; you can redistribute it and/or modify it
|
|
8 ;; under the terms of the GNU General Public License as published by
|
|
9 ;; the Free Software Foundation; either version 3, or (at your option)
|
|
10 ;; any later version.
|
|
11 ;;
|
|
12 ;; GCC is distributed in the hope that it will be useful, but
|
|
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
15 ;; General Public License for more details.
|
|
16 ;;
|
|
17 ;; You should have received a copy of the GNU General Public License
|
|
18 ;; along with GCC; see the file COPYING3. If not see
|
|
19 ;; <http://www.gnu.org/licenses/>. */
|
|
20
|
|
21 ;; These descriptions are based on the information contained in the
|
|
22 ;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
|
|
23 ;; Limited.
|
|
24 ;;
|
|
25
|
|
26 ;; This automaton provides a pipeline description for the ARM
|
|
27 ;; 1020E core.
|
|
28 ;;
|
|
29 ;; The model given here assumes that the condition for all conditional
|
|
30 ;; instructions is "true", i.e., that all of the instructions are
|
|
31 ;; actually executed.
|
|
32
|
|
33 (define_automaton "arm1020e")
|
|
34
|
|
35 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
36 ;; Pipelines
|
|
37 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
38
|
|
39 ;; There are two pipelines:
|
|
40 ;;
|
|
41 ;; - An Arithmetic Logic Unit (ALU) pipeline.
|
|
42 ;;
|
|
43 ;; The ALU pipeline has fetch, issue, decode, execute, memory, and
|
|
44 ;; write stages. We only need to model the execute, memory and write
|
|
45 ;; stages.
|
|
46 ;;
|
|
47 ;; - A Load-Store Unit (LSU) pipeline.
|
|
48 ;;
|
|
49 ;; The LSU pipeline has decode, execute, memory, and write stages.
|
|
50 ;; We only model the execute, memory and write stages.
|
|
51
|
|
52 (define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
|
|
53 (define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
|
|
54
|
|
55 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
56 ;; ALU Instructions
|
|
57 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
58
|
|
59 ;; ALU instructions require three cycles to execute, and use the ALU
|
|
60 ;; pipeline in each of the three stages. The results are available
|
111
|
61 ;; after the execute stage has finished.
|
0
|
62 ;;
|
|
63 ;; If the destination register is the PC, the pipelines are stalled
|
|
64 ;; for several cycles. That case is not modeled here.
|
|
65
|
|
66 ;; ALU operations with no shifted operand
|
|
67 (define_insn_reservation "1020alu_op" 1
|
|
68 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
69 (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
|
|
70 alu_sreg,alus_sreg,logic_reg,logics_reg,\
|
|
71 adc_imm,adcs_imm,adc_reg,adcs_reg,\
|
|
72 adr,bfm,rev,\
|
|
73 shift_imm,shift_reg,\
|
|
74 mov_imm,mov_reg,mvn_imm,mvn_reg,\
|
|
75 multiple,no_insn"))
|
0
|
76 "1020a_e,1020a_m,1020a_w")
|
|
77
|
|
78 ;; ALU operations with a shift-by-constant operand
|
|
79 (define_insn_reservation "1020alu_shift_op" 1
|
|
80 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
81 (eq_attr "type" "alu_shift_imm,alus_shift_imm,\
|
|
82 logic_shift_imm,logics_shift_imm,\
|
|
83 extend,mov_shift,mvn_shift"))
|
0
|
84 "1020a_e,1020a_m,1020a_w")
|
|
85
|
|
86 ;; ALU operations with a shift-by-register operand
|
|
87 ;; These really stall in the decoder, in order to read
|
|
88 ;; the shift value in a second cycle. Pretend we take two cycles in
|
|
89 ;; the execute stage.
|
|
90 (define_insn_reservation "1020alu_shift_reg_op" 2
|
|
91 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
92 (eq_attr "type" "alu_shift_reg,alus_shift_reg,\
|
|
93 logic_shift_reg,logics_shift_reg,\
|
|
94 mov_shift_reg,mvn_shift_reg"))
|
0
|
95 "1020a_e*2,1020a_m,1020a_w")
|
|
96
|
|
97 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
98 ;; Multiplication Instructions
|
|
99 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
100
|
|
101 ;; Multiplication instructions loop in the execute stage until the
|
|
102 ;; instruction has been passed through the multiplier array enough
|
|
103 ;; times.
|
|
104
|
|
105 ;; The result of the "smul" and "smulw" instructions is not available
|
|
106 ;; until after the memory stage.
|
|
107 (define_insn_reservation "1020mult1" 2
|
|
108 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
109 (eq_attr "type" "smulxy,smulwy"))
|
0
|
110 "1020a_e,1020a_m,1020a_w")
|
|
111
|
|
112 ;; The "smlaxy" and "smlawx" instructions require two iterations through
|
|
113 ;; the execute stage; the result is available immediately following
|
|
114 ;; the execute stage.
|
|
115 (define_insn_reservation "1020mult2" 2
|
|
116 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
117 (eq_attr "type" "smlaxy,smlalxy,smlawx"))
|
0
|
118 "1020a_e*2,1020a_m,1020a_w")
|
|
119
|
|
120 ;; The "smlalxy", "mul", and "mla" instructions require two iterations
|
|
121 ;; through the execute stage; the result is not available until after
|
|
122 ;; the memory stage.
|
|
123 (define_insn_reservation "1020mult3" 3
|
|
124 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
125 (eq_attr "type" "smlalxy,mul,mla"))
|
0
|
126 "1020a_e*2,1020a_m,1020a_w")
|
|
127
|
|
128 ;; The "muls" and "mlas" instructions loop in the execute stage for
|
|
129 ;; four iterations in order to set the flags. The value result is
|
|
130 ;; available after three iterations.
|
|
131 (define_insn_reservation "1020mult4" 3
|
|
132 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
133 (eq_attr "type" "muls,mlas"))
|
0
|
134 "1020a_e*4,1020a_m,1020a_w")
|
|
135
|
|
136 ;; Long multiply instructions that produce two registers of
|
|
137 ;; output (such as umull) make their results available in two cycles;
|
|
138 ;; the least significant word is available before the most significant
|
|
139 ;; word. That fact is not modeled; instead, the instructions are
|
|
140 ;; described.as if the entire result was available at the end of the
|
|
141 ;; cycle in which both words are available.
|
|
142
|
|
143 ;; The "umull", "umlal", "smull", and "smlal" instructions all take
|
|
144 ;; three iterations through the execute cycle, and make their results
|
|
145 ;; available after the memory cycle.
|
|
146 (define_insn_reservation "1020mult5" 4
|
|
147 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
148 (eq_attr "type" "umull,umlal,smull,smlal"))
|
0
|
149 "1020a_e*3,1020a_m,1020a_w")
|
|
150
|
|
151 ;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
|
|
152 ;; the execute stage for five iterations in order to set the flags.
|
|
153 ;; The value result is available after four iterations.
|
|
154 (define_insn_reservation "1020mult6" 4
|
|
155 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
156 (eq_attr "type" "umulls,umlals,smulls,smlals"))
|
0
|
157 "1020a_e*5,1020a_m,1020a_w")
|
|
158
|
|
159 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
160 ;; Load/Store Instructions
|
|
161 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
162
|
|
163 ;; The models for load/store instructions do not accurately describe
|
|
164 ;; the difference between operations with a base register writeback
|
|
165 ;; (such as "ldm!"). These models assume that all memory references
|
|
166 ;; hit in dcache.
|
|
167
|
|
168 ;; LSU instructions require six cycles to execute. They use the ALU
|
|
169 ;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
|
|
170 ;; three through six.
|
|
171 ;; Loads and stores which use a scaled register offset or scaled
|
|
172 ;; register pre-indexed addressing mode take three cycles EXCEPT for
|
|
173 ;; those that are base + offset with LSL of 0 or 2, or base - offset
|
|
174 ;; with LSL of zero. The remainder take 1 cycle to execute.
|
|
175 ;; For 4byte loads there is a bypass from the load stage
|
|
176
|
|
177 (define_insn_reservation "1020load1_op" 2
|
|
178 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
179 (eq_attr "type" "load_byte,load_4"))
|
0
|
180 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
181
|
|
182 (define_insn_reservation "1020store1_op" 0
|
|
183 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
184 (eq_attr "type" "store_4"))
|
0
|
185 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
186
|
|
187 ;; A load's result can be stored by an immediately following store
|
|
188 (define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
|
|
189
|
|
190 ;; On a LDM/STM operation, the LSU pipeline iterates until all of the
|
|
191 ;; registers have been processed.
|
|
192 ;;
|
|
193 ;; The time it takes to load the data depends on whether or not the
|
|
194 ;; base address is 64-bit aligned; if it is not, an additional cycle
|
|
195 ;; is required. This model assumes that the address is always 64-bit
|
|
196 ;; aligned. Because the processor can load two registers per cycle,
|
|
197 ;; that assumption means that we use the same instruction reservations
|
|
198 ;; for loading 2k and 2k - 1 registers.
|
|
199 ;;
|
|
200 ;; The ALU pipeline is decoupled after the first cycle unless there is
|
|
201 ;; a register dependency; the dependency is cleared as soon as the LDM/STM
|
|
202 ;; has dealt with the corresponding register. So for example,
|
|
203 ;; stmia sp, {r0-r3}
|
|
204 ;; add r0, r0, #4
|
|
205 ;; will have one fewer stalls than
|
|
206 ;; stmia sp, {r0-r3}
|
|
207 ;; add r3, r3, #4
|
|
208 ;;
|
|
209 ;; As with ALU operations, if one of the destination registers is the
|
|
210 ;; PC, there are additional stalls; that is not modeled.
|
|
211
|
|
212 (define_insn_reservation "1020load2_op" 2
|
|
213 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
214 (eq_attr "type" "load_8"))
|
0
|
215 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
216
|
|
217 (define_insn_reservation "1020store2_op" 0
|
|
218 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
219 (eq_attr "type" "store_8"))
|
0
|
220 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
221
|
|
222 (define_insn_reservation "1020load34_op" 3
|
|
223 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
224 (eq_attr "type" "load_12,load_16"))
|
0
|
225 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
|
|
226
|
|
227 (define_insn_reservation "1020store34_op" 0
|
|
228 (and (eq_attr "tune" "arm1020e,arm1022e")
|
111
|
229 (eq_attr "type" "store_12,store_16"))
|
0
|
230 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
|
|
231
|
|
232 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
233 ;; Branch and Call Instructions
|
|
234 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
235
|
|
236 ;; Branch instructions are difficult to model accurately. The ARM
|
|
237 ;; core can predict most branches. If the branch is predicted
|
|
238 ;; correctly, and predicted early enough, the branch can be completely
|
|
239 ;; eliminated from the instruction stream. Some branches can
|
|
240 ;; therefore appear to require zero cycles to execute. We assume that
|
|
241 ;; all branches are predicted correctly, and that the latency is
|
|
242 ;; therefore the minimum value.
|
|
243
|
|
244 (define_insn_reservation "1020branch_op" 0
|
|
245 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
246 (eq_attr "type" "branch"))
|
|
247 "1020a_e")
|
|
248
|
111
|
249 ;; The latency for a call is not predictable. Therefore, we model as blocking
|
|
250 ;; execution for a number of cycles but we can't do anything more accurate
|
|
251 ;; than that.
|
0
|
252
|
|
253 (define_insn_reservation "1020call_op" 32
|
|
254 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
255 (eq_attr "type" "call"))
|
111
|
256 "1020a_e*4")
|
0
|
257
|
|
258 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
259 ;; VFP
|
|
260 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
261
|
|
262 (define_cpu_unit "v10_fmac" "arm1020e")
|
|
263
|
|
264 (define_cpu_unit "v10_ds" "arm1020e")
|
|
265
|
|
266 (define_cpu_unit "v10_fmstat" "arm1020e")
|
|
267
|
|
268 (define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
|
|
269
|
|
270 ;; fmstat is a serializing instruction. It will stall the core until
|
|
271 ;; the mac and ds units have completed.
|
|
272 (exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
|
|
273
|
|
274 (define_attr "vfp10" "yes,no"
|
|
275 (const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
276 (eq_attr "fpu" "vfp"))
|
|
277 (const_string "yes") (const_string "no"))))
|
|
278
|
|
279 ;; Note, no instruction can issue to the VFP if the core is stalled in the
|
|
280 ;; first execute state. We model this by using 1020a_e in the first cycle.
|
|
281 (define_insn_reservation "v10_ffarith" 5
|
|
282 (and (eq_attr "vfp10" "yes")
|
111
|
283 (eq_attr "type" "fmov,ffariths,ffarithd,fcmps,fcmpd"))
|
0
|
284 "1020a_e+v10_fmac")
|
|
285
|
|
286 (define_insn_reservation "v10_farith" 5
|
|
287 (and (eq_attr "vfp10" "yes")
|
|
288 (eq_attr "type" "faddd,fadds"))
|
|
289 "1020a_e+v10_fmac")
|
|
290
|
|
291 (define_insn_reservation "v10_cvt" 5
|
|
292 (and (eq_attr "vfp10" "yes")
|
111
|
293 (eq_attr "type" "f_cvt,f_cvti2f,f_cvtf2i"))
|
0
|
294 "1020a_e+v10_fmac")
|
|
295
|
|
296 (define_insn_reservation "v10_fmul" 6
|
|
297 (and (eq_attr "vfp10" "yes")
|
111
|
298 (eq_attr "type" "fmuls,fmacs,ffmas,fmuld,fmacd,ffmad"))
|
0
|
299 "1020a_e+v10_fmac*2")
|
|
300
|
|
301 (define_insn_reservation "v10_fdivs" 18
|
|
302 (and (eq_attr "vfp10" "yes")
|
111
|
303 (eq_attr "type" "fdivs, fsqrts"))
|
|
304 "1020a_e+v10_ds*4")
|
0
|
305
|
|
306 (define_insn_reservation "v10_fdivd" 32
|
|
307 (and (eq_attr "vfp10" "yes")
|
111
|
308 (eq_attr "type" "fdivd, fsqrtd"))
|
|
309 "1020a_e+v10_fmac+v10_ds*4")
|
0
|
310
|
|
311 (define_insn_reservation "v10_floads" 4
|
|
312 (and (eq_attr "vfp10" "yes")
|
|
313 (eq_attr "type" "f_loads"))
|
|
314 "1020a_e+1020l_e+v10_ls1,v10_ls2")
|
|
315
|
|
316 ;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
|
|
317 ;; This gives the correct mix between single-and double loads where a flds
|
|
318 ;; followed by and fldd will stall for one cycle, but two back-to-back fldd
|
|
319 ;; insns stall for two cycles.
|
|
320 (define_insn_reservation "v10_floadd" 5
|
|
321 (and (eq_attr "vfp10" "yes")
|
|
322 (eq_attr "type" "f_loadd"))
|
|
323 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
|
|
324
|
|
325 ;; Moves to/from arm regs also use the load/store pipeline.
|
|
326
|
|
327 (define_insn_reservation "v10_c2v" 4
|
|
328 (and (eq_attr "vfp10" "yes")
|
111
|
329 (eq_attr "type" "f_mcr,f_mcrr"))
|
0
|
330 "1020a_e+1020l_e+v10_ls1,v10_ls2")
|
|
331
|
|
332 (define_insn_reservation "v10_fstores" 1
|
|
333 (and (eq_attr "vfp10" "yes")
|
|
334 (eq_attr "type" "f_stores"))
|
|
335 "1020a_e+1020l_e+v10_ls1,v10_ls2")
|
|
336
|
|
337 (define_insn_reservation "v10_fstored" 1
|
|
338 (and (eq_attr "vfp10" "yes")
|
|
339 (eq_attr "type" "f_stored"))
|
|
340 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
|
|
341
|
|
342 (define_insn_reservation "v10_v2c" 1
|
|
343 (and (eq_attr "vfp10" "yes")
|
111
|
344 (eq_attr "type" "f_mrc,f_mrrc"))
|
0
|
345 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
346
|
|
347 (define_insn_reservation "v10_to_cpsr" 2
|
|
348 (and (eq_attr "vfp10" "yes")
|
|
349 (eq_attr "type" "f_flag"))
|
|
350 "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
|
|
351
|
|
352 ;; VFP bypasses
|
|
353
|
|
354 ;; There are bypasses for most operations other than store
|
|
355
|
|
356 (define_bypass 3
|
|
357 "v10_c2v,v10_floads"
|
|
358 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
|
|
359
|
|
360 (define_bypass 4
|
|
361 "v10_floadd"
|
|
362 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
363
|
|
364 ;; Arithmetic to other arithmetic saves a cycle due to forwarding
|
|
365 (define_bypass 4
|
|
366 "v10_ffarith,v10_farith"
|
|
367 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
368
|
|
369 (define_bypass 5
|
|
370 "v10_fmul"
|
|
371 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
372
|
|
373 (define_bypass 17
|
|
374 "v10_fdivs"
|
|
375 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
376
|
|
377 (define_bypass 31
|
|
378 "v10_fdivd"
|
|
379 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
380
|
|
381 ;; VFP anti-dependencies.
|
|
382
|
|
383 ;; There is one anti-dependence in the following case (not yet modelled):
|
|
384 ;; - After a store: one extra cycle for both fsts and fstd
|
|
385 ;; Note, back-to-back fstd instructions will overload the load/store datapath
|
|
386 ;; causing a two-cycle stall.
|