Mercurial > hg > Members > atton > delta_monad
annotate agda/delta.agda @ 56:bfb6be9a689d
Trying redefine monad-laws-1
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Nov 2014 21:09:45 +0900 |
parents | 9c8c09334e32 |
children | dfcd72dc697e |
rev | line source |
---|---|
26
5ba82f107a95
Define Similar in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import list |
28
6e6d646d7722
Split basic functions to file
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
27
diff
changeset
|
2 open import basic |
29
e0ba1bf564dd
Apply level to some functions
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
3 |
e0ba1bf564dd
Apply level to some functions
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
4 open import Level |
27
742e62fc63e4
Define Monad-law 1-4
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
26
diff
changeset
|
5 open import Relation.Binary.PropositionalEquality |
742e62fc63e4
Define Monad-law 1-4
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
26
diff
changeset
|
6 open ≡-Reasoning |
26
5ba82f107a95
Define Similar in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
8 module delta where |
26
5ba82f107a95
Define Similar in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 |
54
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
10 DeltaLog : Set |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
11 DeltaLog = List String |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
12 |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
13 data Delta {l : Level} (A : Set l) : (Set (suc l)) where |
54
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
14 mono : DeltaLog -> A -> Delta A |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
15 delta : DeltaLog -> A -> Delta A -> Delta A |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
16 |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
17 logAppend : {l : Level} {A : Set l} -> DeltaLog -> Delta A -> Delta A |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
18 logAppend l (mono lx x) = mono (l ++ lx) x |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
19 logAppend l (delta lx x d) = delta (l ++ lx) x (logAppend l d) |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
20 |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
21 deltaAppend : {l : Level} {A : Set l} -> Delta A -> Delta A -> Delta A |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
22 deltaAppend (mono lx x) d = delta lx x d |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
23 deltaAppend (delta lx x d) ds = delta lx x (deltaAppend d ds) |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
24 |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
25 headDelta : {l : Level} {A : Set l} -> Delta A -> Delta A |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
26 headDelta (mono lx x) = mono lx x |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
27 headDelta (delta lx x _) = mono lx x |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
28 |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
29 tailDelta : {l : Level} {A : Set l} -> Delta A -> Delta A |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
30 tailDelta (mono lx x) = mono lx x |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
31 tailDelta (delta _ _ d) = d |
26
5ba82f107a95
Define Similar in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
32 |
38
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
33 |
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
34 -- Functor |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
35 fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Delta A) -> (Delta B) |
54
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
36 fmap f (mono lx x) = mono lx (f x) |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
37 fmap f (delta lx x d) = delta lx (f x) (fmap f d) |
26
5ba82f107a95
Define Similar in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
38 |
38
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
39 |
55
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
40 {-# NO_TERMINATION_CHECK #-} |
40
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
41 -- Monad (Category) |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
42 mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A |
54
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
43 mu (mono ld d) = logAppend ld d |
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
44 mu (delta ld d ds) = deltaAppend (logAppend ld (headDelta d)) (mu (fmap tailDelta ds)) |
26
5ba82f107a95
Define Similar in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
45 |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
46 eta : {l : Level} {A : Set l} -> A -> Delta A |
55
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
47 eta x = mono [] x |
27
742e62fc63e4
Define Monad-law 1-4
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
26
diff
changeset
|
48 |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
49 returnS : {l : Level} {A : Set l} -> A -> Delta A |
55
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
50 returnS x = mono [[ (show x) ]] x |
26
5ba82f107a95
Define Similar in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
51 |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
52 returnSS : {l : Level} {A : Set l} -> A -> A -> Delta A |
55
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
53 returnSS x y = delta [[ (show x) ]] x (mono [[ (show y) ]] y) |
26
5ba82f107a95
Define Similar in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
54 |
33 | 55 |
40
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
56 -- Monad (Haskell) |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
57 return : {l : Level} {A : Set l} -> A -> Delta A |
40
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
58 return = eta |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
59 |
41
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
60 _>>=_ : {l ll : Level} {A : Set l} {B : Set ll} -> |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
61 (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B) |
40
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
62 x >>= f = mu (fmap f x) |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
63 |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
64 |
38
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
65 |
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
66 -- proofs |
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
67 |
56
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
68 -- sub proofs |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
69 twice-log-append : {l : Level} {A : Set l} -> (l : List String) -> (ll : List String) -> (d : Delta A) -> |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
70 logAppend l (logAppend ll d) ≡ logAppend (l ++ ll) d |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
71 twice-log-append l ll (mono lx x) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
72 mono (l ++ (ll ++ lx)) x |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
73 ≡⟨ cong (\l -> mono l x) (list-associative l ll lx) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
74 mono (l ++ ll ++ lx) x |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
75 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
76 twice-log-append l ll (delta lx x d) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
77 delta (l ++ (ll ++ lx)) x (logAppend l (logAppend ll d)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
78 ≡⟨ cong (\lx -> delta lx x (logAppend l (logAppend ll d))) (list-associative l ll lx) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
79 delta (l ++ ll ++ lx) x (logAppend l (logAppend ll d)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
80 ≡⟨ cong (delta (l ++ ll ++ lx) x) (twice-log-append l ll d) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
81 delta (l ++ ll ++ lx) x (logAppend (l ++ ll) d) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
82 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
83 |
38
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
84 |
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
85 -- Functor-laws |
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
86 |
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
87 -- Functor-law-1 : T(id) = id' |
55
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
88 functor-law-1 : {l : Level} {A : Set l} -> (d : Delta A) -> (fmap id) d ≡ id d |
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
89 functor-law-1 (mono lx x) = refl |
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
90 functor-law-1 (delta lx x d) = cong (delta lx x) (functor-law-1 d) |
38
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
91 |
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
92 -- Functor-law-2 : T(f . g) = T(f) . T(g) |
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
93 functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> |
55
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
94 (f : B -> C) -> (g : A -> B) -> (d : Delta A) -> |
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
95 (fmap (f ∙ g)) d ≡ ((fmap f) ∙ (fmap g)) d |
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
96 functor-law-2 f g (mono lx x) = refl |
9c8c09334e32
Redefine Delta for infinite changes in Agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
97 functor-law-2 f g (delta lx x d) = cong (delta lx (f (g x))) (functor-law-2 f g d) |
38
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
98 |
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
99 |
56
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
100 |
39 | 101 -- Monad-laws (Category) |
38
6ce83b2c9e59
Proof Functor-laws
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
36
diff
changeset
|
102 |
39 | 103 -- monad-law-1 : join . fmap join = join . join |
56
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
104 monad-law-1 : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) d) ≡ ((mu ∙ mu) d) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
105 monad-law-1 (mono lx (mono llx (mono lllx x))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
106 mono (lx ++ (llx ++ lllx)) x |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
107 ≡⟨ cong (\l -> mono l x) (list-associative lx llx lllx) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
108 mono (lx ++ llx ++ lllx) x |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
109 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
110 monad-law-1 (mono lx (mono llx (delta lllx x d))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
111 delta (lx ++ (llx ++ lllx)) x (logAppend lx (logAppend llx d)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
112 ≡⟨ cong (\l -> delta l x (logAppend lx (logAppend llx d))) (list-associative lx llx lllx) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
113 delta (lx ++ llx ++ lllx) x (logAppend lx (logAppend llx d)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
114 ≡⟨ cong (\d -> delta (lx ++ llx ++ lllx) x d) (twice-log-append lx llx d) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
115 delta (lx ++ llx ++ lllx) x (logAppend (lx ++ llx) d) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
116 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
117 monad-law-1 (mono lx (delta ld (mono x x₁) (mono x₂ (mono x₃ x₄)))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
118 delta (lx ++ (ld ++ x)) x₁ (mono (lx ++ (x₂ ++ x₃)) x₄) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
119 ≡⟨ cong (\l -> delta l x₁(mono (lx ++ (x₂ ++ x₃)) x₄)) (list-associative lx ld x) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
120 delta (lx ++ ld ++ x) x₁ (mono (lx ++ (x₂ ++ x₃)) x₄) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
121 ≡⟨ cong (\l -> delta (lx ++ ld ++ x) x₁ (mono l x₄)) (list-associative lx x₂ x₃) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
122 delta (lx ++ ld ++ x) x₁ (mono (lx ++ x₂ ++ x₃) x₄) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
123 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
124 monad-law-1 (mono lx (delta ld (mono x x₁) (mono x₂ (delta x₃ x₄ ds)))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
125 delta (lx ++ (ld ++ x)) x₁ (logAppend lx (logAppend x₂ ds)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
126 ≡⟨ cong (\l -> delta l x₁ (logAppend lx (logAppend x₂ ds))) (list-associative lx ld x) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
127 delta (lx ++ ld ++ x) x₁ (logAppend lx (logAppend x₂ ds)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
128 ≡⟨ cong (\d -> delta (lx ++ ld ++ x) x₁ d) (twice-log-append lx x₂ ds) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
129 delta (lx ++ ld ++ x) x₁ (logAppend (lx ++ x₂) ds) |
29
e0ba1bf564dd
Apply level to some functions
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
130 ∎ |
56
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
131 monad-law-1 (mono lx (delta ld (delta x x₁ (mono x₂ x₃)) (mono x₄ (mono x₅ x₆)))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
132 delta (lx ++ (ld ++ x)) x₁ (mono (lx ++ (x₄ ++ x₅)) x₆) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
133 ≡⟨ cong (\l -> delta l x₁ (mono (lx ++ (x₄ ++ x₅)) x₆)) (list-associative lx ld x ) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
134 delta (lx ++ ld ++ x) x₁ (mono (lx ++ (x₄ ++ x₅)) x₆) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
135 ≡⟨ cong (\l -> delta (lx ++ ld ++ x) x₁ (mono l x₆)) (list-associative lx x₄ x₅)⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
136 delta (lx ++ ld ++ x) x₁ (mono (lx ++ x₄ ++ x₅) x₆) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
137 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
138 monad-law-1 (mono lx (delta ld (delta x x₁ (mono x₂ x₃)) (mono x₄ (delta x₅ x₆ ds)))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
139 delta (lx ++ (ld ++ x)) x₁ (logAppend lx (logAppend x₄ ds)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
140 ≡⟨ cong (\l -> delta l x₁(logAppend lx (logAppend x₄ ds))) (list-associative lx ld x ) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
141 delta (lx ++ ld ++ x) x₁ (logAppend lx (logAppend x₄ ds)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
142 ≡⟨ cong (\d -> delta (lx ++ ld ++ x) x₁ d) (twice-log-append lx x₄ ds ) ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
143 delta (lx ++ ld ++ x) x₁ (logAppend (lx ++ x₄) ds) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
144 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
145 |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
146 monad-law-1 (mono lx (delta ld (delta x x₁ (delta ly y (mono x₂ x₃))) (mono x₄ (mono x₅ x₆)))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
147 delta (lx ++ (ld ++ x)) x₁ (mono (lx ++ (x₄ ++ x₅)) x₆) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
148 ≡⟨ {!!} ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
149 delta (lx ++ ld ++ x) x₁ (mono (lx ++ x₄ ++ x₅) x₆) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
150 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
151 monad-law-1 (mono lx (delta ld (delta x x₁ (delta ly y (mono x₂ x₃))) (mono x₄ (delta x₅ x₆ ds)))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
152 delta (lx ++ (ld ++ x)) x₁ (logAppend lx (logAppend x₄ ds)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
153 ≡⟨ {!!} ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
154 delta (lx ++ ld ++ x) x₁ (logAppend (lx ++ x₄) ds) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
155 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
156 monad-law-1 (mono lx (delta ld (delta x x₁ (delta ly y (delta x₂ x₃ d))) (mono x₄ (mono x₅ x₆)))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
157 delta (lx ++ (ld ++ x)) x₁ (mono (lx ++ (x₄ ++ x₅)) x₆) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
158 ≡⟨ {!!} ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
159 delta (lx ++ ld ++ x) x₁ (mono (lx ++ x₄ ++ x₅) x₆) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
160 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
161 monad-law-1 (mono lx (delta ld (delta x x₁ (delta ly y (delta x₂ x₃ d))) (mono x₄ (delta x₅ x₆ ds)))) = begin |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
162 delta (lx ++ (ld ++ x)) x₁ (logAppend lx (logAppend x₄ ds)) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
163 ≡⟨ {!!} ⟩ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
164 delta (lx ++ ld ++ x) x₁ (logAppend (lx ++ x₄) ds) |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
165 ∎ |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
166 |
29
e0ba1bf564dd
Apply level to some functions
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
167 |
34
b7c4e6276bcf
Proof Monad-law-2-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
33
diff
changeset
|
168 |
56
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
169 |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
170 monad-law-1 (mono lx (delta ld d (delta x ds ds₁))) = {!!} |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
171 |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
172 |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
173 |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
174 monad-law-1 (delta lx x d) = {!!} |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
175 |
bfb6be9a689d
Trying redefine monad-laws-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
55
diff
changeset
|
176 {- |
39 | 177 -- monad-law-2 : join . fmap return = join . return = id |
178 -- monad-law-2-1 join . fmap return = join . return | |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
179 monad-law-2-1 : {l : Level} {A : Set l} -> (s : Delta A) -> |
40
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
180 (mu ∙ fmap eta) s ≡ (mu ∙ eta) s |
34
b7c4e6276bcf
Proof Monad-law-2-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
33
diff
changeset
|
181 monad-law-2-1 (similar lx x ly y) = begin |
b7c4e6276bcf
Proof Monad-law-2-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
33
diff
changeset
|
182 similar (lx ++ []) x (ly ++ []) y |
b7c4e6276bcf
Proof Monad-law-2-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
33
diff
changeset
|
183 ≡⟨ cong (\left-list -> similar left-list x (ly ++ []) y) (empty-append lx)⟩ |
b7c4e6276bcf
Proof Monad-law-2-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
33
diff
changeset
|
184 similar lx x (ly ++ []) y |
b7c4e6276bcf
Proof Monad-law-2-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
33
diff
changeset
|
185 ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩ |
b7c4e6276bcf
Proof Monad-law-2-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
33
diff
changeset
|
186 similar lx x ly y |
b7c4e6276bcf
Proof Monad-law-2-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
33
diff
changeset
|
187 ∎ |
b7c4e6276bcf
Proof Monad-law-2-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
33
diff
changeset
|
188 |
39 | 189 -- monad-law-2-2 : join . return = id |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
190 monad-law-2-2 : {l : Level} {A : Set l } -> (s : Delta A) -> (mu ∙ eta) s ≡ id s |
35
c5cdbedc68ad
Proof Monad-law-2-2
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
34
diff
changeset
|
191 monad-law-2-2 (similar lx x ly y) = refl |
c5cdbedc68ad
Proof Monad-law-2-2
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
34
diff
changeset
|
192 |
39 | 193 -- monad-law-3 : return . f = fmap f . return |
40
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
194 monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x |
36 | 195 monad-law-3 f x = refl |
27
742e62fc63e4
Define Monad-law 1-4
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
26
diff
changeset
|
196 |
39 | 197 -- monad-law-4 : join . fmap (fmap f) = fmap f . join |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
198 monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Delta (Delta A)) -> |
36 | 199 (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s |
40
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
200 monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
201 |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
202 |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
203 -- Monad-laws (Haskell) |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
204 -- monad-law-h-1 : return a >>= k = k a |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
205 monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} -> |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
206 (a : A) -> (k : A -> (Delta B)) -> |
40
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
207 (return a >>= k) ≡ (k a) |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
208 monad-law-h-1 a k = begin |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
209 return a >>= k |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
210 ≡⟨ refl ⟩ |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
211 mu (fmap k (return a)) |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
212 ≡⟨ refl ⟩ |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
213 mu (return (k a)) |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
214 ≡⟨ refl ⟩ |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
215 (mu ∙ return) (k a) |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
216 ≡⟨ refl ⟩ |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
217 (mu ∙ eta) (k a) |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
218 ≡⟨ (monad-law-2-2 (k a)) ⟩ |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
219 id (k a) |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
220 ≡⟨ refl ⟩ |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
221 k a |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
222 ∎ |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
223 |
a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
39
diff
changeset
|
224 -- monad-law-h-2 : m >>= return = m |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
225 monad-law-h-2 : {l : Level}{A : Set l} -> (m : Delta A) -> (m >>= return) ≡ m |
41
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
226 monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
227 |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
228 -- monad-law-h-3 : m >>= (\x -> k x >>= h) = (m >>= k) >>= h |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
229 monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
230 (m : Delta A) -> (k : A -> (Delta B)) -> (h : B -> (Delta C)) -> |
41
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
231 (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
232 monad-law-h-3 (similar lx x ly y) k h = begin |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
233 ((similar lx x ly y) >>= (\x -> (k x) >>= h)) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
234 ≡⟨ refl ⟩ |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
235 mu (fmap (\x -> k x >>= h) (similar lx x ly y)) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
236 ≡⟨ refl ⟩ |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
237 (mu ∙ fmap (\x -> k x >>= h)) (similar lx x ly y) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
238 ≡⟨ refl ⟩ |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
239 (mu ∙ fmap (\x -> mu (fmap h (k x)))) (similar lx x ly y) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
240 ≡⟨ refl ⟩ |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
241 (mu ∙ fmap (mu ∙ (\x -> fmap h (k x)))) (similar lx x ly y) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
242 ≡⟨ refl ⟩ |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
243 (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
244 ≡⟨ refl ⟩ |
42
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
245 (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
246 ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩ |
43
90b171e3a73e
Rename to Delta from Similar
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
247 (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) |
42
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
248 ≡⟨ refl ⟩ |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
249 (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
250 ≡⟨ refl ⟩ |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
251 (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y) |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
252 ≡⟨ refl ⟩ |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
253 (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y) |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
254 ≡⟨ refl ⟩ |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
255 (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y)) |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
256 ≡⟨ refl ⟩ |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
257 mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y))) |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
258 ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩ |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
259 mu (fmap h (mu (similar lx (k x) ly (k y)))) |
1df4f9d88025
Proof Monad-law-3 (haskell)
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
260 ≡⟨ refl ⟩ |
41
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
261 (mu ∙ fmap h) (mu (fmap k (similar lx x ly y))) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
262 ≡⟨ refl ⟩ |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
263 mu (fmap h (mu (fmap k (similar lx x ly y)))) |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
264 ≡⟨ refl ⟩ |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
265 (mu (fmap k (similar lx x ly y))) >>= h |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
266 ≡⟨ refl ⟩ |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
267 ((similar lx x ly y) >>= k) >>= h |
23474bf242c6
Proof monad-law-h-2, trying monad-law-h-3
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
40
diff
changeset
|
268 ∎ |
54
9bb7c9bee94f
Trying redefine delta for infinite changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
269 -} |