Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate filter.agda @ 224:afc864169325
recover ε-induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Aug 2019 12:31:25 +0900 |
parents | 0b9645a65542 |
children | 650bdad56729 |
rev | line source |
---|---|
190 | 1 open import Level |
193 | 2 open import OD |
190 | 3 open import zf |
4 open import ordinal | |
193 | 5 module filter ( n : Level ) where |
6 | |
190 | 7 open import Relation.Nullary |
8 open import Relation.Binary | |
9 open import Data.Empty | |
10 open import Relation.Binary | |
11 open import Relation.Binary.Core | |
12 open import Relation.Binary.PropositionalEquality | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
13 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
14 |
193 | 15 od = OD→ZF {n} |
16 | |
190 | 17 |
18 record Filter {n : Level} ( P max : OD {suc n} ) : Set (suc (suc n)) where | |
19 field | |
20 _⊇_ : OD {suc n} → OD {suc n} → Set (suc n) | |
21 G : OD {suc n} | |
22 G∋1 : G ∋ max | |
23 Gmax : { p : OD {suc n} } → P ∋ p → p ⊇ max | |
24 Gless : { p q : OD {suc n} } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q | |
25 Gcompat : { p q : OD {suc n} } → G ∋ p → G ∋ q → ¬ ( | |
26 ( r : OD {suc n}) → (( p ⊇ r ) ∧ ( p ⊇ r ))) | |
27 | |
28 dense : {n : Level} → Set (suc (suc n)) | |
29 dense {n} = { D P p : OD {suc n} } → ({x : OD {suc n}} → P ∋ p → ¬ ( ( q : OD {suc n}) → D ∋ q → od→ord p o< od→ord q )) | |
30 | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
31 record NatFilter {n : Level} ( P : Nat → Set n) : Set (suc n) where |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
32 field |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
33 GN : Nat → Set n |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
34 GN∋1 : GN 0 |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
35 GNmax : { p : Nat } → P p → 0 ≤ p |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
36 GNless : { p q : Nat } → GN p → P q → q ≤ p → GN q |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
37 Gr : ( p q : Nat ) → GN p → GN q → Nat |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
38 GNcompat : { p q : Nat } → (gp : GN p) → (gq : GN q ) → ( Gr p q gp gq ≤ p ) ∨ ( Gr p q gp gq ≤ q ) |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
39 |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
40 record NatDense {n : Level} ( P : Nat → Set n) : Set (suc n) where |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
41 field |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
42 Gmid : { p : Nat } → P p → Nat |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
43 GDense : { D : Nat → Set n } → {x p : Nat } → (pp : P p ) → D (Gmid {p} pp) → Gmid pp ≤ p |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
44 |
190 | 45 open OD.OD |
46 | |
47 -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) | |
48 | |
49 Pred : {n : Level} ( Dom : OD {suc n} ) → OD {suc n} | |
50 Pred {n} dom = record { | |
51 def = λ x → def dom x → Set n | |
52 } | |
53 | |
54 Hω2 : {n : Level} → OD {suc n} | |
55 Hω2 {n} = record { def = λ x → {dom : Ordinal {suc n}} → x ≡ od→ord ( Pred ( ord→od dom )) } | |
56 | |
57 Hω2Filter : {n : Level} → Filter {n} Hω2 od∅ | |
58 Hω2Filter {n} = record { | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
59 _⊇_ = _⊇_ |
190 | 60 ; G = {!!} |
61 ; G∋1 = {!!} | |
62 ; Gmax = {!!} | |
63 ; Gless = {!!} | |
64 ; Gcompat = {!!} | |
65 } where | |
66 P = Hω2 | |
67 _⊇_ : OD {suc n} → OD {suc n} → Set (suc n) | |
68 _⊇_ = {!!} | |
69 G : OD {suc n} | |
70 G = {!!} | |
71 G∋1 : G ∋ od∅ | |
72 G∋1 = {!!} | |
73 Gmax : { p : OD {suc n} } → P ∋ p → p ⊇ od∅ | |
74 Gmax = {!!} | |
75 Gless : { p q : OD {suc n} } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q | |
76 Gless = {!!} | |
77 Gcompat : { p q : OD {suc n} } → G ∋ p → G ∋ q → ¬ ( | |
78 ( r : OD {suc n}) → (( p ⊇ r ) ∧ ( p ⊇ r ))) | |
79 Gcompat = {!!} | |
80 |