Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate ordinal-definable.agda @ 44:fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
does not worked
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 May 2019 04:12:30 +0900 |
parents | 0d9b9db14361 |
children | 33860eb44e47 |
rev | line source |
---|---|
16 | 1 open import Level |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
2 module ordinal-definable where |
3 | 3 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
4 open import zf |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
5 open import ordinal |
3 | 6 |
23 | 7 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
3 | 8 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
9 open import Relation.Binary.PropositionalEquality |
3 | 10 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
11 open import Data.Nat.Properties |
6 | 12 open import Data.Empty |
13 open import Relation.Nullary | |
14 | |
15 open import Relation.Binary | |
16 open import Relation.Binary.Core | |
17 | |
27 | 18 -- Ordinal Definable Set |
11 | 19 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
20 record OD {n : Level} : Set (suc n) where |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
21 field |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
22 def : (x : Ordinal {n} ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
23 |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
24 open OD |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
25 open import Data.Unit |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
26 |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
27 open Ordinal |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
28 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
29 postulate |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
30 od→lv : {n : Level} → OD {n} → Nat |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
31 od→d : {n : Level} → (x : OD {n}) → OrdinalD {n} (od→lv x ) |
36 | 32 ord→od : {n : Level} → Ordinal {n} → OD {n} |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
33 |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
34 od→ord : {n : Level} → OD {n} → Ordinal {n} |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
35 od→ord x = record { lv = od→lv x ; ord = od→d x } |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
36 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
37 _∋_ : { n : Level } → ( a x : OD {n} ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
38 _∋_ {n} a x = def a ( od→ord x ) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
39 |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
40 _c<_ : { n : Level } → ( a x : OD {n} ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
41 x c< a = a ∋ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
42 |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
43 -- _=='_ : {n : Level} → Set (suc n) -- Rel (OD {n}) (suc n) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
44 -- _=='_ {n} = ( a b : OD {n} ) → ( ∀ { x : OD {n} } → a ∋ x → b ∋ x ) ∧ ( ∀ { x : OD {n} } → a ∋ x → b ∋ x ) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
45 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
46 record _==_ {n : Level} ( a b : OD {n} ) : Set n where |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
47 field |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
48 eq→ : ∀ { x : Ordinal {n} } → def a x → def b x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
49 eq← : ∀ { x : Ordinal {n} } → def b x → def a x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
50 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
51 id : {n : Level} {A : Set n} → A → A |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
52 id x = x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
53 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
54 eq-refl : {n : Level} { x : OD {n} } → x == x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
55 eq-refl {n} {x} = record { eq→ = id ; eq← = id } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
56 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
57 open _==_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
58 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
59 eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
60 eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
61 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
62 eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
63 eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
64 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
65 _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
66 a c≤ b = (a ≡ b) ∨ ( b ∋ a ) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
67 |
40 | 68 od∅ : {n : Level} → OD {n} |
69 od∅ {n} = record { def = λ _ → Lift n ⊥ } | |
70 | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
71 postulate |
36 | 72 c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y |
73 o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
74 oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
75 diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
76 sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
77 sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → ψ x c< sup-od ψ |
40 | 78 ∅-base-def : {n : Level} → def ( ord→od (o∅ {n}) ) ≡ def (od∅ {n}) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
79 |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
80 ∅1 : {n : Level} → ( x : OD {n} ) → ¬ ( x c< od∅ {n} ) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
81 ∅1 {n} x (lift ()) |
28 | 82 |
37 | 83 ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n} |
84 ∅3 {n} {x} = TransFinite {n} c1 c2 c3 x where | |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
85 c0 : Nat → Ordinal {n} → Set n |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
86 c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x)) → x ≡ o∅ {n} |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
87 c1 : ∀ (lx : Nat ) → c0 lx (record { lv = Suc lx ; ord = ℵ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
88 c1 lx not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
89 ... | t with t (case1 ≤-refl ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
90 c1 lx not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
91 c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
92 c2 Zero not = refl |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
93 c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
94 ... | t with t (case1 ≤-refl ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
95 c2 (Suc lx) not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
96 c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ }) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
97 c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
98 ... | t with t (case2 Φ< ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
99 c3 lx (Φ .lx) d not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
100 c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } ) |
34 | 101 ... | t with t (case2 (s< s<refl ) ) |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
102 c3 lx (OSuc .lx x₁) d not | t | () |
34 | 103 c3 (Suc lx) (ℵ lx) d not with not ( record { lv = Suc lx ; ord = OSuc (Suc lx) (Φ (Suc lx)) } ) |
41 | 104 ... | t with t (case2 (s< ℵΦ< )) |
34 | 105 c3 .(Suc lx) (ℵ lx) d not | t | () |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
106 |
37 | 107 -- find : {n : Level} → ( x : Ordinal {n} ) → o∅ o< x → Ordinal {n} |
108 -- exists : {n : Level} → ( x : Ordinal {n} ) → (0<x : o∅ o< x ) → find x 0<x o< x | |
109 | |
36 | 110 def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x |
111 def-subst df refl refl = df | |
112 | |
113 transitive : {n : Level } { x y z : OD {n} } → y ∋ x → z ∋ y → z ∋ x | |
114 transitive {n} {x} {y} {z} x∋y z∋y with ordtrans ( c<→o< {n} {x} {y} x∋y ) ( c<→o< {n} {y} {z} z∋y ) | |
115 ... | t = lemma0 (lemma t) where | |
116 lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) | |
117 lemma xo<z = o<→c< xo<z | |
118 lemma0 : def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) → def z (od→ord x) | |
119 lemma0 dz = def-subst {n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso) | |
120 | |
41 | 121 record Minimumo {n : Level } (x : Ordinal {n}) : Set (suc n) where |
122 field | |
123 mino : Ordinal {n} | |
124 min<x : mino o< x | |
125 | |
126 ominimal : {n : Level} → (x : Ordinal {n} ) → o∅ o< x → Minimumo {n} x | |
37 | 127 ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case1 ()) |
128 ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case2 ()) | |
129 ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case1 ()) | |
41 | 130 ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case2 Φ<) = record { mino = record { lv = Zero ; ord = Φ 0 } ; min<x = case2 Φ< } |
131 ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case1 (s≤s x)) = record { mino = record { lv = lv ; ord = Φ lv } ; min<x = case1 (s≤s ≤-refl)} | |
37 | 132 ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case2 ()) |
41 | 133 ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case1 (s≤s x)) = record { mino = record { lv = (Suc lv) ; ord = ord } ; min<x = case2 s<refl} |
37 | 134 ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case2 ()) |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
135 ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case1 (s≤s z≤n)) = record { mino = record { lv = Suc lx ; ord = Φ (Suc lx) } ; min<x = case2 ℵΦ< } |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
136 ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case2 ()) |
37 | 137 |
138 ∅4 : {n : Level} → ( x : OD {n} ) → x ≡ od∅ {n} → od→ord x ≡ o∅ {n} | |
139 ∅4 {n} x refl = ∅3 lemma1 where | |
140 lemma0 : (y : Ordinal {n}) → def ( od∅ {n} ) y → ⊥ | |
141 lemma0 y (lift ()) | |
142 lemma1 : (y : Ordinal {n}) → y o< od→ord od∅ → ⊥ | |
143 lemma1 y y<o = lemma0 y ( def-subst {n} {ord→od (od→ord od∅ )} {od→ord (ord→od y)} (o<→c< y<o) oiso diso ) | |
144 | |
145 ∅5 : {n : Level} → ( x : Ordinal {n} ) → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x | |
146 ∅5 {n} record { lv = Zero ; ord = (Φ .0) } not = ⊥-elim (not refl) | |
147 ∅5 {n} record { lv = Zero ; ord = (OSuc .0 ord) } not = case2 Φ< | |
148 ∅5 {n} record { lv = (Suc lv) ; ord = ord } not = case1 (s≤s z≤n) | |
149 | |
39 | 150 postulate extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) |
37 | 151 |
152 ∅6 : {n : Level } ( x : Ordinal {suc n}) → o∅ o< x → ¬ x ≡ o∅ | |
153 ∅6 {n} x lt eq with trio< {n} (o∅ {suc n}) x | |
154 ∅6 {n} x lt refl | tri< a ¬b ¬c = ¬b refl | |
155 ∅6 {n} x lt refl | tri≈ ¬a b ¬c = ¬a lt | |
156 ∅6 {n} x lt refl | tri> ¬a ¬b c = ¬b refl | |
157 | |
39 | 158 ∅8 : {n : Level} → ( x : Ordinal {n} ) → ¬ x o< o∅ {n} |
159 ∅8 {n} x (case1 ()) | |
160 ∅8 {n} x (case2 ()) | |
161 | |
40 | 162 -- ∅10 : {n : Level} → (x : OD {n} ) → ¬ ( ( y : OD {n} ) → Lift (suc n) ( x ∋ y)) → x ≡ od∅ |
163 -- ∅10 {n} x not = ? | |
39 | 164 |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
165 -- ∋-subst : {n : Level} {X Y x y : OD {suc n} } → X ≡ x → Y ≡ y → X ∋ Y → x ∋ y |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
166 -- ∋-subst refl refl x = x |
39 | 167 |
40 | 168 -- ∅77 : {n : Level} → (x : OD {suc n} ) → ¬ ( ord→od (o∅ {suc n}) ∋ x ) |
169 -- ∅77 {n} x lt = {!!} where | |
39 | 170 |
171 ∅7' : {n : Level} → ord→od (o∅ {n}) ≡ od∅ {n} | |
40 | 172 ∅7' {n} = cong ( λ k → record { def = k }) ( ∅-base-def ) where |
39 | 173 |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
174 open import Relation.Binary.HeterogeneousEquality using (_≅_;refl) |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
175 |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
176 |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
177 ∅7'' : {n : Level} → ( x : OD {n} ) → od→lv {n} x ≡ Zero → od→d {n} x ≅ Φ {n} Zero → x == od∅ {n} |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
178 ∅7'' {n} x eq eq1 = {!!} |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
179 |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
180 ∅7 : {n : Level} → ( x : OD {n} ) → od→ord x ≡ o∅ {n} → x == od∅ {n} |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
181 ∅7 {n} x eq = record { eq→ = e1 ; eq← = e2 } where |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
182 e0 : {y : Ordinal {n}} → y o< o∅ {n} → def od∅ y |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
183 e0 {y} (case1 ()) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
184 e0 {y} (case2 ()) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
185 e1 : {y : Ordinal {n}} → def x y → def od∅ y |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
186 e1 {y} y<x with c<→o< {n} {x} y<x |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
187 e1 {y} y<x | case1 lt = {!!} |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
188 e1 {y} y<x | case2 lt = {!!} |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
189 e2 : {y : Ordinal {n}} → def od∅ y → def x y |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
190 e2 {y} (lift ()) |
37 | 191 |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
192 ∅9 : {n : Level} → (x : OD {n} ) → ¬ x == od∅ → o∅ o< od→ord x |
38 | 193 ∅9 x not = ∅5 ( od→ord x) lemma where |
194 lemma : ¬ od→ord x ≡ o∅ | |
195 lemma eq = not ( ∅7 x eq ) | |
37 | 196 |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
197 |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
198 OD→ZF : {n : Level} → ZF {suc n} {n} |
40 | 199 OD→ZF {n} = record { |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
200 ZFSet = OD {n} |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
201 ; _∋_ = _∋_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
202 ; _≈_ = _==_ |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
203 ; ∅ = od∅ |
28 | 204 ; _,_ = _,_ |
205 ; Union = Union | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
206 ; Power = Power |
28 | 207 ; Select = Select |
208 ; Replace = Replace | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
209 ; infinite = record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero } } |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
210 ; isZF = isZF |
28 | 211 } where |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
212 Replace : OD {n} → (OD {n} → OD {n} ) → OD {n} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
213 Replace X ψ = sup-od ψ |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
214 Select : OD {n} → (OD {n} → Set n ) → OD {n} |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
215 Select X ψ = record { def = λ x → select ( ord→od x ) } where |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
216 select : OD {n} → Set n |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
217 select x = ψ x |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
218 _,_ : OD {n} → OD {n} → OD {n} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
219 x , y = record { def = λ z → ( (z ≡ od→ord x ) ∨ ( z ≡ od→ord y )) } |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
220 Union : OD {n} → OD {n} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
221 Union x = record { def = λ y → {z : Ordinal {n}} → def x z → def (ord→od z) y } |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
222 Power : OD {n} → OD {n} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
223 Power x = record { def = λ y → (z : Ordinal {n} ) → ( def x y ∧ def (ord→od z) y ) } |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
224 ZFSet = OD {n} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
225 _∈_ : ( A B : ZFSet ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
226 A ∈ B = B ∋ A |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
227 _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
228 _⊆_ A B {x} = A ∋ x → B ∋ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
229 _∩_ : ( A B : ZFSet ) → ZFSet |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
230 A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
231 _∪_ : ( A B : ZFSet ) → ZFSet |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
232 A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
233 infixr 200 _∈_ |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
234 infixr 230 _∩_ _∪_ |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
235 infixr 220 _⊆_ |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
236 isZF : IsZF (OD {n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero } }) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
237 isZF = record { |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
238 isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
239 ; pair = pair |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
240 ; union→ = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
241 ; union← = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
242 ; empty = empty |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
243 ; power→ = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
244 ; power← = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
245 ; extentionality = {!!} |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
246 ; minimul = minimul |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
247 ; regularity = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
248 ; infinity∅ = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
249 ; infinity = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
250 ; selection = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
251 ; replacement = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
252 } where |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
253 open _∧_ |
41 | 254 open Minimumo |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
255 pair : (A B : OD {n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
256 proj1 (pair A B ) = case1 refl |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
257 proj2 (pair A B ) = case2 refl |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
258 empty : (x : OD {n} ) → ¬ (od∅ ∋ x) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
259 empty x () |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
260 union→ : (X x y : OD {n} ) → (X ∋ x) → (x ∋ y) → (Union X ∋ y) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
261 union→ X x y X∋x x∋y = {!!} where |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
262 lemma : {z : Ordinal {n} } → def X z → z ≡ od→ord y |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
263 lemma {z} X∋z = {!!} |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
264 minord : (x : OD {n} ) → ¬ (x == od∅ )→ Minimumo (od→ord x) |
41 | 265 minord x not = ominimal (od→ord x) (∅9 x not) |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
266 minimul : (x : OD {n} ) → ¬ (x == od∅ )→ OD {n} |
41 | 267 minimul x not = ord→od ( mino (minord x not)) |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
268 minimul<x : (x : OD {n} ) → (not : ¬ x == od∅ ) → x ∋ minimul x not |
42 | 269 minimul<x x not = lemma0 (min<x (minord x not)) where |
270 lemma0 : mino (minord x not) o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not)))) | |
271 lemma0 m<x = def-subst {n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl | |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
272 regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
273 (Select (minimul x not , x) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
274 -- regularity : (x : OD) → (not : ¬ x == od∅ ) → |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
275 -- ((x ∋ minimul x not ) ∧ {!!} ) -- (Select x (λ x₁ → (( minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅))) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
276 proj1 ( regularity x non ) = minimul<x x non |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
277 proj2 ( regularity x non ) = {!!} where -- cong ( λ k → record { def = k } ) ( extensionality ( λ y → lemma0 y) ) where |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
278 not-min : ( z : Ordinal {n} ) → ¬ ( def (Select x (λ y → (minimul x non ∋ y) ∧ (x ∋ y))) z ) |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
279 not-min z = {!!} |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
280 lemma0 : ( z : Ordinal {n} ) → def (Select x (λ y → (minimul x non ∋ y) ∧ (x ∋ y))) z ≡ Lift n ⊥ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
281 lemma0 z = {!!} |
42 | 282 |