annotate automaton-in-agda/src/non-regular.agda @ 412:b85402051cdb

add mul
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 05 Apr 2024 13:38:20 +0900
parents af8f630b7e60
children
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
1 {-# OPTIONS --cubical-compatible --safe #-}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
2
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 module non-regular where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import Data.Nat
274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
6 open import Data.Empty
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open import Data.List
278
e89957b99662 dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 277
diff changeset
8 open import Data.Maybe hiding ( map )
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Relation.Binary.PropositionalEquality hiding ( [_] )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import logic
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import automaton
274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
12 open import automaton-ex
278
e89957b99662 dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 277
diff changeset
13 open import finiteSetUtil
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 open import finiteSet
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
15 open import Relation.Nullary
274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
16 open import regular-language
306
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 305
diff changeset
17 open import nat
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
18 open import pumping
306
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 305
diff changeset
19
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20
274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
21 open FiniteSet
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
22
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
23 list-eq : List In2 → List In2 → Bool
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
24 list-eq [] [] = true
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
25 list-eq [] (x ∷ s1) = false
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
26 list-eq (x ∷ s) [] = false
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
27 list-eq (i0 ∷ s) (i0 ∷ s1) = false
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
28 list-eq (i0 ∷ s) (i1 ∷ s1) = false
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
29 list-eq (i1 ∷ s) (i0 ∷ s1) = false
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
30 list-eq (i1 ∷ s) (i1 ∷ s1) = list-eq s s1
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
31
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
32 input-addi0 : ( n : ℕ ) → List In2 → List In2
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
33 input-addi0 zero x = x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
34 input-addi0 (suc i) x = i0 ∷ input-addi0 i x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
35
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
36 input-addi1 : ( n : ℕ ) → List In2
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
37 input-addi1 zero = []
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
38 input-addi1 (suc i) = i1 ∷ input-addi1 i
274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
39
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
40 inputnn0 : ( n : ℕ ) → List In2
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
41 inputnn0 n = input-addi0 n (input-addi1 n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
42
412
b85402051cdb add mul
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 405
diff changeset
43 --
b85402051cdb add mul
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 405
diff changeset
44 -- using count of i0 and i1 makes the proof easier
b85402051cdb add mul
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 405
diff changeset
45 --
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
46 inputnn1-i1 : (i : ℕ) → List In2 → Bool
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
47 inputnn1-i1 zero [] = true
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
48 inputnn1-i1 (suc _) [] = false
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
49 inputnn1-i1 zero (i1 ∷ x) = false
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
50 inputnn1-i1 (suc i) (i1 ∷ x) = inputnn1-i1 i x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
51 inputnn1-i1 zero (i0 ∷ x) = false
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
52 inputnn1-i1 (suc _) (i0 ∷ x) = false
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
53
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
54 inputnn1-i0 : (i : ℕ) → List In2 → ℕ ∧ List In2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
55 inputnn1-i0 i [] = ⟪ i , [] ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
56 inputnn1-i0 i (i1 ∷ x) = ⟪ i , (i1 ∷ x) ⟫
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
57 inputnn1-i0 i (i0 ∷ x) = inputnn1-i0 (suc i) x
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
58
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
59 open _∧_
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
60
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
61 inputnn1 : List In2 → Bool
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
62 inputnn1 x = inputnn1-i1 (proj1 (inputnn1-i0 0 x)) (proj2 (inputnn1-i0 0 x))
274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
63
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
64 t1 = inputnn1 ( i0 ∷ i1 ∷ [] )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
65 t2 = inputnn1 ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] )
277
42563cc6afdf non-regular
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
66 t3 = inputnn1 ( i0 ∷ i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] )
274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
67
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
68 t4 : inputnn1 ( inputnn0 5 ) ≡ true
274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
69 t4 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
70
291
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
71 t5 : ( n : ℕ ) → Set
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
72 t5 n = inputnn1 ( inputnn0 n ) ≡ true
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
73
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
74 import Level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
75
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
76 cons-inject : {n : Level.Level } (A : Set n) { a b : A } {x1 x2 : List A} → a ∷ x1 ≡ b ∷ x2 → x1 ≡ x2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
77 cons-inject _ refl = refl
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
78
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
79 append-[] : {A : Set} {x1 : List A } → x1 ++ [] ≡ x1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
80 append-[] {A} {[]} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
81 append-[] {A} {x ∷ x1} = cong (λ k → x ∷ k) (append-[] {A} {x1} )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
82
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
83 open import Data.Nat.Properties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
84 open import Relation.Binary.Definitions
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
85 open import Relation.Binary.PropositionalEquality
291
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
86
388
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
87 nn30 : (y : List In2) → (j : ℕ) → proj2 (inputnn1-i0 (suc j) y) ≡ proj2 (inputnn1-i0 j y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
88 nn30 [] _ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
89 nn30 (i0 ∷ y) j = nn30 y (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
90 nn30 (i1 ∷ y) _ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
91
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
92 nn31 : (y : List In2) → (j : ℕ) → proj1 (inputnn1-i0 (suc j) y) ≡ suc (proj1 (inputnn1-i0 j y ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
93 nn31 [] _ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
94 nn31 (i0 ∷ y) j = nn31 y (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
95 nn31 (i1 ∷ y) _ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
96
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
97 nn01 : (i : ℕ) → inputnn1 ( inputnn0 i ) ≡ true
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
98 nn01 i = subst₂ (λ j k → inputnn1-i1 j k ≡ true) (sym (nn07 i 0 refl)) (sym (nn09 i)) (nn04 i) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
99 nn07 : (j x : ℕ) → x + j ≡ i → proj1 ( inputnn1-i0 x (input-addi0 j (input-addi1 i))) ≡ x + j
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
100 nn07 zero x eq with input-addi1 i in eq1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
101 ... | [] = +-comm 0 _
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
102 ... | i0 ∷ t = ⊥-elim ( nn08 i eq1 ) where
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
103 nn08 : (i : ℕ) → ¬ (input-addi1 i ≡ i0 ∷ t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
104 nn08 zero ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
105 nn08 (suc i) ()
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
106 ... | i1 ∷ t = +-comm 0 _
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
107 nn07 (suc j) x eq = trans (nn07 j (suc x) (trans (cong (λ k → k + j) (+-comm 1 _ )) (trans (+-assoc x _ _) eq)) )
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
108 (trans (+-assoc 1 x _) (trans (cong (λ k → k + j) (+-comm 1 _) ) (+-assoc x 1 _) ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
109 nn09 : (x : ℕ) → proj2 ( inputnn1-i0 0 (input-addi0 x (input-addi1 i))) ≡ input-addi1 i
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
110 nn09 zero with input-addi1 i in eq1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
111 ... | [] = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
112 ... | i0 ∷ t = ⊥-elim ( nn08 i eq1 ) where
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
113 nn08 : (i : ℕ) → ¬ (input-addi1 i ≡ i0 ∷ t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
114 nn08 zero ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
115 nn08 (suc i) ()
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
116 ... | i1 ∷ t = refl
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
117 nn09 (suc j) = trans (nn30 (input-addi0 j (input-addi1 i)) 0) (nn09 j )
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
118 nn04 : (i : ℕ) → inputnn1-i1 i (input-addi1 i) ≡ true
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
119 nn04 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
120 nn04 (suc i) = nn04 i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
121
393
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
122 half : (x : List In2) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
123 half [] = 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
124 half (x ∷ []) = 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
125 half (x ∷ x₁ ∷ x₂) = suc (half x₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
126
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
127 top-is-i0 : (x : List In2) → Bool
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
128 top-is-i0 [] = true
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
129 top-is-i0 (i0 ∷ _) = true
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
130 top-is-i0 (i1 ∷ _) = false
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 392
diff changeset
131
397
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 396
diff changeset
132 -- if this is easy, we may have an easy proof
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 396
diff changeset
133 -- nn02 : (x : List In2) → inputnn1 x ≡ true → x ≡ inputnn0 (half x)
395
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 394
diff changeset
134
274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
135 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
136 -- if there is an automaton with n states , which accespt inputnn1, it has a trasition function.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
137 -- The function is determinted by inputs,
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
138 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
139
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
140 open RegularLanguage
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
141 open Automaton
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
142
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
143 open _∧_
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
144
277
42563cc6afdf non-regular
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
145
280
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
146 open RegularLanguage
294
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 291
diff changeset
147 open import Data.Nat.Properties
386
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
148 open import Data.List.Properties
294
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 291
diff changeset
149 open import nat
280
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
150
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
151 lemmaNN : (r : RegularLanguage In2 ) → ¬ ( (s : List In2) → isRegular inputnn1 s r )
332
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 320
diff changeset
152 lemmaNN r Rg = tann {TA.x TAnn} (TA.non-nil-y TAnn ) (TA.xyz=is TAnn) (tr-accept→ (automaton r) _ (astart r) (TA.trace-xyz TAnn) )
317
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 316
diff changeset
153 (tr-accept→ (automaton r) _ (astart r) (TA.trace-xyyz TAnn) ) where
280
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
154 n : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
155 n = suc (finite (afin r))
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
156 nn = inputnn0 n
280
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
157 nn03 : accept (automaton r) (astart r) nn ≡ true
294
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 291
diff changeset
158 nn03 = subst (λ k → k ≡ true ) (Rg nn ) (nn01 n)
304
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 303
diff changeset
159 nn09 : (n m : ℕ) → n ≤ n + m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 303
diff changeset
160 nn09 zero m = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 303
diff changeset
161 nn09 (suc n) m = s≤s (nn09 n m)
295
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 294
diff changeset
162 nn04 : Trace (automaton r) nn (astart r)
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
163 nn04 = tr-accept← (automaton r) nn (astart r) nn03
315
25ae77240238 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
164 nntrace = tr→qs (automaton r) nn (astart r) nn04
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
165 nn07 : (n : ℕ) → length (inputnn0 n ) ≡ n + n
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
166 nn07 i = nn19 i where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
167 nn17 : (i : ℕ) → length (input-addi1 i) ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
168 nn17 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
169 nn17 (suc i)= cong suc (nn17 i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
170 nn18 : (i j : ℕ) → length (input-addi0 j (input-addi1 i)) ≡ j + length (input-addi1 i )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
171 nn18 i zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
172 nn18 i (suc j)= cong suc (nn18 i j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
173 nn19 : (i : ℕ) → length (input-addi0 i ( input-addi1 i )) ≡ i + i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
174 nn19 i = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
175 length (input-addi0 i ( input-addi1 i )) ≡⟨ nn18 i i ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
176 i + length (input-addi1 i) ≡⟨ cong (λ k → i + k) ( nn17 i) ⟩
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
177 i + i ∎ where open ≡-Reasoning
294
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 291
diff changeset
178 nn05 : length nntrace > finite (afin r)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 291
diff changeset
179 nn05 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 291
diff changeset
180 suc (finite (afin r)) ≤⟨ nn09 _ _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 291
diff changeset
181 n + n ≡⟨ sym (nn07 n) ⟩
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
182 length (inputnn0 n ) ≡⟨ tr→qs=is (automaton r) (inputnn0 n ) (astart r) nn04 ⟩
294
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 291
diff changeset
183 length nntrace ∎ where open ≤-Reasoning
315
25ae77240238 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
184 nn06 : Dup-in-list ( afin r) (tr→qs (automaton r) nn (astart r) nn04)
304
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 303
diff changeset
185 nn06 = dup-in-list>n (afin r) nntrace nn05
332
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 320
diff changeset
186
304
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 303
diff changeset
187 TAnn : TA (automaton r) (astart r) nn
317
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 316
diff changeset
188 TAnn = pumping-lemma (automaton r) (afin r) (astart r) (Dup-in-list.dup nn06) nn nn04 (Dup-in-list.is-dup nn06)
332
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 320
diff changeset
189
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
190 open import Tactic.MonoidSolver using (solve; solve-macro)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
191
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
192 -- there is a counter example
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
193 --
317
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 316
diff changeset
194 tann : {x y z : List In2} → ¬ y ≡ []
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 316
diff changeset
195 → x ++ y ++ z ≡ nn
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 316
diff changeset
196 → accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true )
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
197 tann {x} {y} {z} ny eq axyz axyyz = ¬-bool (nn10 x y z ny (trans (Rg (x ++ y ++ z)) axyz ) ) (trans (Rg (x ++ y ++ y ++ z)) axyyz ) where
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
198 count0 : (x : List In2) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
199 count0 [] = 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
200 count0 (i0 ∷ x) = suc (count0 x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
201 count0 (i1 ∷ x) = count0 x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
202 count1 : (x : List In2) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
203 count1 [] = 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
204 count1 (i1 ∷ x) = suc (count1 x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
205 count1 (i0 ∷ x) = count1 x
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
206 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
207 -- prove some obvious fact
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
208 --
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
209 c0+1=n : (x : List In2 ) → count0 x + count1 x ≡ length x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
210 c0+1=n [] = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
211 c0+1=n (i0 ∷ t) = cong suc ( c0+1=n t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
212 c0+1=n (i1 ∷ t) = begin
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
213 count0 t + suc (count1 t) ≡⟨ sym (+-assoc (count0 t) _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
214 (count0 t + 1 ) + count1 t ≡⟨ cong (λ k → k + count1 t) (+-comm _ 1 ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
215 suc (count0 t + count1 t) ≡⟨ cong suc ( c0+1=n t ) ⟩
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
216 suc (length t) ∎ where open ≡-Reasoning
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
217 --
386
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
218 nn15 : (x : List In2 ) → inputnn1 x ≡ true → count0 x ≡ count1 x
388
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
219 nn15 x eq = nn18 where
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
220 nn17 : (x : List In2 ) → (count0 x ≡ proj1 (inputnn1-i0 0 x) + count0 (proj2 (inputnn1-i0 0 x)))
388
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
221 ∧ (count1 x ≡ 0 + count1 (proj2 (inputnn1-i0 0 x)))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
222 nn17 [] = ⟪ refl , refl ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
223 nn17 (i0 ∷ t ) with nn17 t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
224 ... | ⟪ eq1 , eq2 ⟫ = ⟪ begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
225 suc (count0 t ) ≡⟨ cong suc eq1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
226 suc (proj1 (inputnn1-i0 0 t) + count0 (proj2 (inputnn1-i0 0 t))) ≡⟨ cong₂ _+_ (sym (nn31 t 0)) (cong count0 (sym (nn30 t 0))) ⟩
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
227 proj1 (inputnn1-i0 1 t) + count0 (proj2 (inputnn1-i0 1 t)) ∎
388
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
228 , trans eq2 (cong count1 (sym (nn30 t 0))) ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
229 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
230 nn20 : proj2 (inputnn1-i0 1 t) ≡ proj2 (inputnn1-i0 0 t)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
231 nn20 = nn30 t 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
232 nn17 (i1 ∷ x₁) = ⟪ refl , refl ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
233 nn19 : (n : ℕ) → (y : List In2 ) → inputnn1-i1 n y ≡ true → (count0 y ≡ 0) ∧ (count1 y ≡ n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
234 nn19 zero [] eq = ⟪ refl , refl ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
235 nn19 zero (i0 ∷ y) ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
236 nn19 zero (i1 ∷ y) ()
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
237 nn19 (suc i) (i1 ∷ y) eq with nn19 i y eq
388
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
238 ... | t = ⟪ proj1 t , cong suc (proj2 t ) ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
239 nn18 : count0 x ≡ count1 x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
240 nn18 = begin
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
241 count0 x ≡⟨ proj1 (nn17 x) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
242 proj1 (inputnn1-i0 0 x) + count0 (proj2 (inputnn1-i0 0 x)) ≡⟨ cong (λ k → proj1 (inputnn1-i0 0 x) + k)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
243 (proj1 (nn19 (proj1 (inputnn1-i0 0 x)) (proj2 (inputnn1-i0 0 x)) eq)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
244 proj1 (inputnn1-i0 0 x) + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
245 0 + proj1 (inputnn1-i0 0 x) ≡⟨ cong (λ k → 0 + k) (sym (proj2 (nn19 _ _ eq))) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
246 0 + count1 (proj2 (inputnn1-i0 0 x)) ≡⟨ sym (proj2 (nn17 x)) ⟩
388
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
247 count1 x ∎ where open ≡-Reasoning
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
248 distr0 : (x y : List In2 ) → count0 (x ++ y ) ≡ count0 x + count0 y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
249 distr0 [] y = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
250 distr0 (i0 ∷ x) y = cong suc (distr0 x y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
251 distr0 (i1 ∷ x) y = distr0 x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
252 distr1 : (x y : List In2 ) → count1 (x ++ y ) ≡ count1 x + count1 y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
253 distr1 [] y = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
254 distr1 (i1 ∷ x) y = cong suc (distr1 x y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
255 distr1 (i0 ∷ x) y = distr1 x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
256 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
257 -- i0 .. i0 ∷ i1 .. i1 sequece does not contains i1 → i0 transition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
258 --
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
259 record i1i0 (z : List In2) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
260 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
261 a b : List In2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
262 i10 : z ≡ a ++ (i1 ∷ i0 ∷ b )
388
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
263 nn12 : (x : List In2 ) → inputnn1 x ≡ true → ¬ i1i0 x
391
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 390
diff changeset
264 nn12 x eq = nn17 x 0 eq where
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
265 nn17 : (x : List In2 ) → (i : ℕ)
391
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 390
diff changeset
266 → inputnn1-i1 (proj1 (inputnn1-i0 i x)) (proj2 (inputnn1-i0 i x)) ≡ true → ¬ i1i0 x
390
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 389
diff changeset
267 nn17 [] i eq li with i1i0.a li | i1i0.i10 li
388
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
268 ... | [] | ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
269 ... | x ∷ s | ()
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
270 nn17 (i0 ∷ x₁) i eq li = nn17 x₁ (suc i) eq record { a = nn18 (i1i0.a li) (i1i0.i10 li) ; b = i1i0.b li
391
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 390
diff changeset
271 ; i10 = nn19 (i1i0.a li) (i1i0.i10 li) } where
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
272 -- first half
391
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 390
diff changeset
273 nn18 : (a : List In2 ) → i0 ∷ x₁ ≡ a ++ ( i1 ∷ i0 ∷ i1i0.b li) → List In2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 390
diff changeset
274 nn18 (i0 ∷ t) eq = t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 390
diff changeset
275 nn19 : (a : List In2 ) → (eq : i0 ∷ x₁ ≡ a ++ ( i1 ∷ i0 ∷ i1i0.b li) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 390
diff changeset
276 → x₁ ≡ nn18 a eq ++ i1 ∷ i0 ∷ i1i0.b li
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
277 nn19 (i0 ∷ a) eq = cons-inject In2 eq
391
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 390
diff changeset
278 nn17 (i1 ∷ x₁) i eq li = nn20 (i1 ∷ x₁) i eq li where
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
279 -- second half
391
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 390
diff changeset
280 nn20 : (x : List In2) → (i : ℕ) → inputnn1-i1 i x ≡ true → i1i0 x → ⊥
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
281 nn20 x i eq li = nn21 (i1i0.a li) x i eq (i1i0.i10 li) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
282 nn21 : (a x : List In2) → (i : ℕ) → inputnn1-i1 i x ≡ true → x ≡ a ++ i1 ∷ i0 ∷ i1i0.b li → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
283 nn21 [] [] zero eq1 ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
284 nn21 (i0 ∷ a) [] zero eq1 ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
285 nn21 (i1 ∷ a) [] zero eq1 ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
286 nn21 a (i0 ∷ x₁) zero () eq0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
287 nn21 [] (i0 ∷ x₁) (suc i) () eq0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
288 nn21 (x ∷ a) (i0 ∷ x₁) (suc i) () eq0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
289 nn21 [] (i1 ∷ i0 ∷ x₁) (suc zero) () eq0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
290 nn21 [] (i1 ∷ i0 ∷ x₁) (suc (suc i)) () eq0
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
291 nn21 (i1 ∷ a) (i1 ∷ x₁) (suc i) eq1 eq0 = nn21 a x₁ i eq1 (cons-inject In2 eq0)
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
292 nn11 : (x y z : List In2 ) → ¬ y ≡ [] → inputnn1 (x ++ y ++ z) ≡ true → ¬ ( inputnn1 (x ++ y ++ y ++ z) ≡ true )
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
293 nn11 x y z ny xyz xyyz = ⊥-elim ( nn12 (x ++ y ++ y ++ z ) xyyz record { a = x ++ i1i0.a (bb23 bb22 )
388
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 387
diff changeset
294 ; b = i1i0.b (bb23 bb22) ++ z ; i10 = bb24 } ) where
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
295 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
296 -- we need simple calcuraion to obtain count0 y ≡ count1 y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
297 --
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
298 nn21 : count0 x + count0 y + count0 y + count0 z ≡ count1 x + count1 y + count1 y + count1 z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
299 nn21 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
300 (count0 x + count0 y + count0 y) + count0 z ≡⟨ solve +-0-monoid ⟩
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
301 count0 x + (count0 y + (count0 y + count0 z)) ≡⟨ sym (cong (λ k → count0 x + (count0 y + k)) (distr0 y _ )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
302 count0 x + (count0 y + count0 (y ++ z)) ≡⟨ sym (cong (λ k → count0 x + k) (distr0 y _ )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
303 count0 x + (count0 (y ++ y ++ z)) ≡⟨ sym (distr0 x _ ) ⟩
386
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
304 count0 (x ++ y ++ y ++ z) ≡⟨ nn15 (x ++ y ++ y ++ z) xyyz ⟩
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
305 count1 (x ++ y ++ y ++ z) ≡⟨ distr1 x _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
306 count1 x + (count1 (y ++ y ++ z)) ≡⟨ cong (λ k → count1 x + k) (distr1 y _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
307 count1 x + (count1 y + count1 (y ++ z)) ≡⟨ (cong (λ k → count1 x + (count1 y + k)) (distr1 y _ )) ⟩
386
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
308 count1 x + (count1 y + (count1 y + count1 z)) ≡⟨ solve +-0-monoid ⟩
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
309 count1 x + count1 y + count1 y + count1 z ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
310 nn20 : count0 x + count0 y + count0 z ≡ count1 x + count1 y + count1 z
386
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
311 nn20 = begin
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
312 count0 x + count0 y + count0 z ≡⟨ solve +-0-monoid ⟩
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
313 count0 x + (count0 y + count0 z) ≡⟨ cong (λ k → count0 x + k) (sym (distr0 y z)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
314 count0 x + (count0 (y ++ z)) ≡⟨ sym (distr0 x _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
315 count0 (x ++ (y ++ z)) ≡⟨ nn15 (x ++ y ++ z) xyz ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
316 count1 (x ++ (y ++ z)) ≡⟨ distr1 x _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
317 count1 x + count1 (y ++ z) ≡⟨ cong (λ k → count1 x + k) (distr1 y z) ⟩
386
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
318 count1 x + (count1 y + count1 z) ≡⟨ solve +-0-monoid ⟩
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
319 count1 x + count1 y + count1 z ∎ where open ≡-Reasoning
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
320 -- this takes very long time to check and needs 10GB
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
321 bb22 : count0 y ≡ count1 y
403
c298981108c1 fix for std-lib 2.0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 397
diff changeset
322 bb22 = begin
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
323 count0 y ≡⟨ ? ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
324 -- count0 y ≡⟨ sym ( +-cancelʳ-≡ (count1 z + count0 x + count0 y + count0 z) (count1 y) (count0 y) (+-cancelˡ-≡ _ (count1 x + count1 y) (
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
325 -- begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
326 -- count1 x + count1 y + (count1 y + (count1 z + count0 x + count0 y + count0 z)) ≡⟨ solve +-0-monoid ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
327 -- (count1 x + count1 y + count1 y + count1 z) + (count0 x + count0 y + count0 z) ≡⟨ sym (cong₂ _+_ nn21 (sym nn20)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
328 -- (count0 x + count0 y + count0 y + count0 z) + (count1 x + count1 y + count1 z) ≡⟨ +-comm _ (count1 x + count1 y + count1 z) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
329 -- (count1 x + count1 y + count1 z) + (count0 x + count0 y + count0 y + count0 z) ≡⟨ solve +-0-monoid ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
330 -- count1 x + count1 y + (count1 z + (count0 x + count0 y)) + count0 y + count0 z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
331 -- ≡⟨ cong (λ k → count1 x + count1 y + (count1 z + k) + count0 y + count0 z) (+-comm (count0 x) _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
332 -- count1 x + count1 y + (count1 z + (count0 y + count0 x)) + count0 y + count0 z ≡⟨ solve +-0-monoid ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
333 -- count1 x + count1 y + ((count1 z + count0 y) + count0 x) + count0 y + count0 z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
334 -- ≡⟨ cong (λ k → count1 x + count1 y + (k + count0 x) + count0 y + count0 z ) (+-comm (count1 z) _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
335 -- count1 x + count1 y + (count0 y + count1 z + count0 x) + count0 y + count0 z ≡⟨ solve +-0-monoid ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
336 -- count1 x + count1 y + (count0 y + (count1 z + count0 x + count0 y + count0 z)) ∎ ))) ⟩
403
c298981108c1 fix for std-lib 2.0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 397
diff changeset
337 count1 y ∎ where open ≡-Reasoning
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
338 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
339 -- y contains i0 and i1 , so we have i1 → i0 transition in y ++ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
340 --
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
341 bb23 : count0 y ≡ count1 y → i1i0 (y ++ y)
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
342 bb23 eq = bb25 y y bb26 (subst (λ k → 0 < k ) (sym eq) bb26) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
343 bb26 : 0 < count1 y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
344 bb26 with <-cmp 0 (count1 y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
345 ... | tri< a ¬b ¬c = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
346 ... | tri≈ ¬a b ¬c = ⊥-elim (nat-≡< (sym bb27 ) (0<ly y ny) ) where
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
347 0<ly : (y : List In2) → ¬ y ≡ [] → 0 < length y
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
348 0<ly [] ne = ⊥-elim ( ne refl )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
349 0<ly (x ∷ y) ne = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
350 bb27 : length y ≡ 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
351 bb27 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
352 length y ≡⟨ sym (c0+1=n y) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
353 count0 y + count1 y ≡⟨ cong (λ k → k + count1 y ) eq ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
354 count1 y + count1 y ≡⟨ cong₂ _+_ (sym b) (sym b) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
355 0 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
356 bb25 : (x y : List In2 ) → 0 < count1 x → 0 < count0 y → i1i0 (x ++ y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
357 bb25 (i0 ∷ x₁) y 0<x 0<y with bb25 x₁ y 0<x 0<y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
358 ... | t = record { a = i0 ∷ i1i0.a t ; b = i1i0.b t ; i10 = cong (i0 ∷_) (i1i0.i10 t) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
359 bb25 (i1 ∷ []) y 0<x 0<y = bb27 y 0<y where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
360 bb27 : (y : List In2 ) → 0 < count0 y → i1i0 (i1 ∷ y )
392
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 391
diff changeset
361 bb27 (i0 ∷ y) 0<y = record { a = [] ; b = y ; i10 = refl }
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
362 bb27 (i1 ∷ y) 0<y with bb27 y 0<y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
363 ... | t = record { a = i1 ∷ i1i0.a t ; b = i1i0.b t ; i10 = cong (i1 ∷_) (i1i0.i10 t) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
364 bb25 (i1 ∷ i0 ∷ x₁) y 0<x 0<y = record { a = [] ; b = x₁ ++ y ; i10 = refl }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
365 bb25 (i1 ∷ i1 ∷ x₁) y (s≤s z≤n) 0<y with bb25 (i1 ∷ x₁) y (s≤s z≤n) 0<y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
366 ... | t = record { a = i1 ∷ i1i0.a t ; b = i1i0.b t ; i10 = cong (i1 ∷_) (i1i0.i10 t) }
386
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
367 bb24 : x ++ y ++ y ++ z ≡ (x ++ i1i0.a (bb23 bb22)) ++ i1 ∷ i0 ∷ i1i0.b (bb23 bb22) ++ z
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
368 bb24 = begin
386
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
369 x ++ y ++ y ++ z ≡⟨ solve (++-monoid In2) ⟩
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
370 x ++ (y ++ y) ++ z ≡⟨ cong (λ k → x ++ k ++ z) (i1i0.i10 (bb23 bb22)) ⟩
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
371 x ++ (i1i0.a (bb23 bb22) ++ i1 ∷ i0 ∷ i1i0.b (bb23 bb22)) ++ z ≡⟨ cong (λ k → x ++ k) -- solver does not work here
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
372 (++-assoc (i1i0.a (bb23 bb22)) (i1 ∷ i0 ∷ i1i0.b (bb23 bb22)) z ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
373 x ++ (i1i0.a (bb23 bb22) ++ (i1 ∷ i0 ∷ i1i0.b (bb23 bb22) ++ z)) ≡⟨ sym (++-assoc x _ _ ) ⟩
386
6ef927ac832c bb22 takes 10GB and 5 min
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 385
diff changeset
374 (x ++ i1i0.a (bb23 bb22)) ++ i1 ∷ i0 ∷ i1i0.b (bb23 bb22) ++ z ∎ where open ≡-Reasoning
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
375
387
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 386
diff changeset
376 nn10 : (x y z : List In2 ) → ¬ y ≡ [] → inputnn1 (x ++ y ++ z) ≡ true → inputnn1 (x ++ y ++ y ++ z) ≡ false
405
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
377 nn10 x y z my eq with inputnn1 (x ++ y ++ y ++ z) in eq1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
378 ... | true = ⊥-elim ( nn11 x y z my eq eq1 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 403
diff changeset
379 ... | false = refl
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
380
304
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 303
diff changeset
381
385
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
382
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
383
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
384
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
385