Mercurial > hg > Members > kono > Proof > category
annotate src/freyd2.agda @ 1107:4a6d3d27a9fb
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 11 Mar 2023 01:14:24 +0900 |
parents | 270f0ba65b88 |
children | 45de2b31bf02 |
rev | line source |
---|---|
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Category -- https://github.com/konn/category-agda |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Level |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
3 open import Category.Sets renaming ( _o_ to _*_ ) |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 module freyd2 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 where |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
8 open import HomReasoning |
1106 | 9 open import cat-utility |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
10 open import Relation.Binary.Core |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
11 open import Function |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
12 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
13 ---------- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
14 -- |
693 | 15 -- A is locally small complete and K{*}↓U has preinitial full subcategory, U is an adjoint functor |
16 -- | |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
17 -- a : Obj A |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
18 -- U : A → Sets |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
19 -- U ⋍ Hom (a,-) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
20 -- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
21 |
1100 | 22 open import Relation.Binary.PropositionalEquality hiding ( [_] ; sym ; resp ) |
781 | 23 |
693 | 24 -- A is localy small |
25 postulate ≡←≈ : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y | |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
26 |
949
ac53803b3b2a
reorganization for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
781
diff
changeset
|
27 import Axiom.Extensionality.Propositional |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
28 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) |
1034 | 29 -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂ |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
30 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
31 ---- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
32 -- |
617
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
616
diff
changeset
|
33 -- Hom ( a, - ) is Object mapping in Yoneda Functor |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
34 -- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
35 ---- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
36 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
37 open NTrans |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
38 open Functor |
498
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
39 open Limit |
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
40 open IsLimit |
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
41 open import Category.Cat |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
42 |
609 | 43 open Representable |
502 | 44 |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
45 _↓_ : { c₁ c₂ ℓ : Level} { c₁' c₂' ℓ' : Level} { A : Category c₁ c₂ ℓ } { B : Category c₁' c₂' ℓ' } |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
46 → ( F G : Functor A B ) |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
47 → Category (c₂' ⊔ c₁) (ℓ' ⊔ c₂) ℓ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
48 _↓_ { c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} { A } { B } F G = CommaCategory |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
49 where open import Comma1 F G |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
50 |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
51 open Complete |
695 | 52 open HasInitialObject |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
53 open import Comma1 |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
54 open CommaObj |
609 | 55 open LimitPreserve |
608 | 56 |
609 | 57 -- Representable Functor U preserve limit , so K{*}↓U is complete |
610 | 58 -- |
616 | 59 -- Yoneda A b = λ a → Hom A a b : Functor A Sets |
617
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
616
diff
changeset
|
60 -- : Functor Sets A |
610 | 61 |
635
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
62 YonedaFpreserveLimit0 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) |
612 | 63 (b : Obj A ) |
1106 | 64 (Γ : Functor I (Category.op A)) (limita : Limit I (Category.op A) Γ) → |
65 IsLimit I Sets (Yoneda A (≡←≈ A) b ○ Γ) (FObj (Yoneda A (≡←≈ A) b) (a0 limita)) (LimitNat I (Category.op A) Sets Γ (a0 limita) (t0 limita) (Yoneda A (≡←≈ A) b)) | |
635
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
66 YonedaFpreserveLimit0 {c₁} {c₂} {ℓ} A I b Γ lim = record { |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
67 limit = λ a t → ψ a t |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
68 ; t0f=t = λ {a t i} → t0f=t0 a t i |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
69 ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t |
610 | 70 } where |
1106 | 71 opA = Category.op A |
72 hat0 : NTrans I Sets (K I Sets (FObj (Yoneda A (≡←≈ A) b) (a0 lim))) (Yoneda A (≡←≈ A) b ○ Γ) | |
73 hat0 = LimitNat I opA Sets Γ (a0 lim) (t0 lim) (Yoneda A (≡←≈ A) b) | |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
74 haa0 : Obj Sets |
1106 | 75 haa0 = FObj (Yoneda A (≡←≈ A) b) (a0 lim) |
76 ta : (a : Obj Sets) ( x : a ) ( t : NTrans I Sets (K I Sets a) (Yoneda A (≡←≈ A) b ○ Γ)) → NTrans I opA (K I opA b ) Γ | |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
77 ta a x t = record { TMap = λ i → (TMap t i ) x ; isNTrans = record { commute = commute1 } } where |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
78 commute1 : {a₁ b₁ : Obj I} {f : Hom I a₁ b₁} → |
1106 | 79 opA [ opA [ FMap Γ f o TMap t a₁ x ] ≈ opA [ TMap t b₁ x o FMap (K I opA b) f ] ] |
80 commute1 {a₁} {b₁} {f} = let open ≈-Reasoning opA in begin | |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
81 FMap Γ f o TMap t a₁ x |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
82 ≈⟨⟩ |
1106 | 83 ( ( FMap (Yoneda A (≡←≈ A) b ○ Γ ) f ) * TMap t a₁ ) x |
693 | 84 ≈⟨ ≈←≡ ( cong (λ k → k x ) (IsNTrans.commute (isNTrans t)) ) ⟩ |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
85 ( TMap t b₁ * ( FMap (K I Sets a) f ) ) x |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
86 ≈⟨⟩ |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
87 ( TMap t b₁ * id1 Sets a ) x |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
88 ≈⟨⟩ |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
89 TMap t b₁ x |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
90 ≈↑⟨ idR ⟩ |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
91 TMap t b₁ x o id1 A b |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
92 ≈⟨⟩ |
1106 | 93 TMap t b₁ x o FMap (K I opA b) f |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
94 ∎ |
1106 | 95 ψ : (X : Obj Sets) ( t : NTrans I Sets (K I Sets X) (Yoneda A (≡←≈ A) b ○ Γ)) |
96 → Hom Sets X (FObj (Yoneda A (≡←≈ A) b) (a0 lim)) | |
97 ψ X t x = FMap (Yoneda A (≡←≈ A) b) (limit (isLimit lim) b (ta X x t )) (id1 A b ) | |
98 t0f=t0 : (a : Obj Sets ) ( t : NTrans I Sets (K I Sets a) (Yoneda A (≡←≈ A) b ○ Γ)) (i : Obj I) | |
99 → Sets [ Sets [ TMap (LimitNat I opA Sets Γ (a0 lim) (t0 lim) (Yoneda A (≡←≈ A) b)) i o ψ a t ] ≈ TMap t i ] | |
100 t0f=t0 a t i = let open ≈-Reasoning opA in extensionality opA ( λ x → (≡←≈ A) ( begin | |
101 ( Sets [ TMap (LimitNat I opA Sets Γ (a0 lim) (t0 lim) (Yoneda A (≡←≈ A) b)) i o ψ a t ] ) x | |
612 | 102 ≈⟨⟩ |
1106 | 103 FMap (Yoneda A (≡←≈ A) b) ( TMap (t0 lim) i) (FMap (Yoneda A (≡←≈ A) b) (limit (isLimit lim) b (ta a x t )) (id1 A b )) |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
104 ≈⟨⟩ -- FMap (Hom A b ) f g = A [ f o g ] |
613 | 105 TMap (t0 lim) i o (limit (isLimit lim) b (ta a x t ) o id1 A b ) |
106 ≈⟨ cdr idR ⟩ | |
107 TMap (t0 lim) i o limit (isLimit lim) b (ta a x t ) | |
108 ≈⟨ t0f=t (isLimit lim) ⟩ | |
109 TMap (ta a x t) i | |
110 ≈⟨⟩ | |
612 | 111 TMap t i x |
112 ∎ )) | |
1106 | 113 limit-uniqueness0 : {a : Obj Sets} {t : NTrans I Sets (K I Sets a) (Yoneda A (≡←≈ A) b ○ Γ)} {f : Hom Sets a (FObj (Yoneda A (≡←≈ A) b) (a0 lim))} → |
114 ({i : Obj I} → Sets [ Sets [ TMap (LimitNat I opA Sets Γ (a0 lim) (t0 lim) (Yoneda A (≡←≈ A) b)) i o f ] ≈ TMap t i ]) → | |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
115 Sets [ ψ a t ≈ f ] |
1106 | 116 limit-uniqueness0 {a} {t} {f} t0f=t = let open ≈-Reasoning opA in extensionality A ( λ x → (≡←≈ A) ( begin |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
117 ψ a t x |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
118 ≈⟨⟩ |
1106 | 119 FMap (Yoneda A (≡←≈ A) b) (limit (isLimit lim) b (ta a x t )) (id1 A b ) |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
120 ≈⟨⟩ |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
121 limit (isLimit lim) b (ta a x t ) o id1 A b |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
122 ≈⟨ idR ⟩ |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
123 limit (isLimit lim) b (ta a x t ) |
693 | 124 ≈⟨ limit-uniqueness (isLimit lim) ( λ {i} → ≈←≡ ( cong ( λ g → g x )( t0f=t {i} ))) ⟩ |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
125 f x |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
126 ∎ )) |
610 | 127 |
609 | 128 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
129 YonedaFpreserveLimit : {c₁ c₂ ℓ : Level} (I : Category c₁ c₂ ℓ) (A : Category c₁ c₂ ℓ) |
1106 | 130 (b : Obj A ) → LimitPreserve I (Category.op A) Sets (Yoneda A (≡←≈ A) b) |
131 YonedaFpreserveLimit I opA b = record { | |
132 preserve = λ Γ lim → YonedaFpreserveLimit0 opA I b Γ lim | |
610 | 133 } |
609 | 134 |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
135 |
608 | 136 -- K{*}↓U has preinitial full subcategory if U is representable |
609 | 137 -- if U is representable, K{*}↓U has initial Object ( so it has preinitial full subcategory ) |
608 | 138 |
617
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
616
diff
changeset
|
139 open CommaHom |
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
616
diff
changeset
|
140 |
627 | 141 data * {c : Level} : Set c where |
142 OneObj : * | |
143 | |
609 | 144 KUhasInitialObj : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
608 | 145 (a : Obj A ) |
1106 | 146 → HasInitialObject ( K (Category.op A) Sets * ↓ (Yoneda A (≡←≈ A) a) ) ( record { obj = a ; hom = λ x → id1 A a } ) |
621 | 147 KUhasInitialObj {c₁} {c₂} {ℓ} A a = record { |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
148 initial = λ b → initial0 b |
636 | 149 ; uniqueness = λ f → unique f |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
150 } where |
1106 | 151 opA = Category.op A |
621 | 152 commaCat : Category (c₂ ⊔ c₁) c₂ ℓ |
1106 | 153 commaCat = K opA Sets * ↓ Yoneda A (≡←≈ A) a |
154 initObj : Obj (K opA Sets * ↓ Yoneda A (≡←≈ A) a) | |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
155 initObj = record { obj = a ; hom = λ x → id1 A a } |
1106 | 156 comm2 : (b : Obj commaCat) ( x : * ) → ( Sets [ FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) o (λ x₁ → id1 A a) ] ) x ≡ hom b x |
157 comm2 b OneObj = let open ≈-Reasoning opA in (≡←≈ A) ( begin | |
158 ( Sets [ FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) o (λ x₁ → id1 A a) ] ) OneObj | |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
159 ≈⟨⟩ |
1106 | 160 FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) (id1 A a) |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
161 ≈⟨⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
162 hom b OneObj o id1 A a |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
163 ≈⟨ idR ⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
164 hom b OneObj |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
165 ∎ ) |
1106 | 166 comm1 : (b : Obj commaCat) → Sets [ Sets [ FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) o hom initObj ] ≈ Sets [ hom b o FMap (K opA Sets *) (hom b OneObj) ] ] |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
167 comm1 b = let open ≈-Reasoning Sets in begin |
1106 | 168 FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) o ( λ x → id1 A a ) |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
169 ≈⟨ extensionality A ( λ x → comm2 b x ) ⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
170 hom b |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
171 ≈⟨⟩ |
1106 | 172 hom b o FMap (K opA Sets *) (hom b OneObj) |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
173 ∎ |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
174 initial0 : (b : Obj commaCat) → |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
175 Hom commaCat initObj b |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
176 initial0 b = record { |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
177 arrow = hom b OneObj |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
178 ; comm = comm1 b } |
625 | 179 -- what is comm f ? |
1106 | 180 comm-f : (b : Obj (K opA Sets * ↓ (Yoneda A (≡←≈ A) a))) (f : Hom (K opA Sets * ↓ Yoneda A (≡←≈ A) a) initObj b) |
181 → Sets [ Sets [ FMap (Yoneda A (≡←≈ A) a) (arrow f) o ( λ x → id1 A a ) ] | |
182 ≈ Sets [ hom b o FMap (K opA Sets *) (arrow f) ] ] | |
625 | 183 comm-f b f = comm f |
1106 | 184 unique : {b : Obj (K opA Sets * ↓ Yoneda A (≡←≈ A) a)} (f : Hom (K opA Sets * ↓ Yoneda A (≡←≈ A) a) initObj b) |
185 → (K opA Sets * ↓ Yoneda A (≡←≈ A) a) [ f ≈ initial0 b ] | |
186 unique {b} f = let open ≈-Reasoning opA in begin | |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
187 arrow f |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
188 ≈↑⟨ idR ⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
189 arrow f o id1 A a |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
190 ≈⟨⟩ |
1106 | 191 ( Sets [ FMap (Yoneda A (≡←≈ A) a) (arrow f) o id1 Sets (FObj (Yoneda A (≡←≈ A) a) a) ] ) (id1 A a) |
625 | 192 ≈⟨⟩ |
1106 | 193 ( Sets [ FMap (Yoneda A (≡←≈ A) a) (arrow f) o ( λ x → id1 A a ) ] ) OneObj |
693 | 194 ≈⟨ ≈←≡ ( cong (λ k → k OneObj ) (comm f )) ⟩ |
1106 | 195 ( Sets [ hom b o FMap (K opA Sets *) (arrow f) ] ) OneObj |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
196 ≈⟨⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
197 hom b OneObj |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
198 ∎ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
199 |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
200 |
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
201 |
644
8e35703ef116
representability theorem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
643
diff
changeset
|
202 -- A is complete and K{*}↓U has preinitial full subcategory and U preserve limit then U is representable |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
203 |
638 | 204 -- if U preserve limit, K{*}↓U has initial object from freyd.agda |
205 | |
626 | 206 ≡-cong = Relation.Binary.PropositionalEquality.cong |
207 | |
638 | 208 |
209 ub : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
210 → Hom Sets (FObj (K A Sets *) b) (FObj U b) |
638 | 211 ub A U b x OneObj = x |
212 ob : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
213 → Obj ( K A Sets * ↓ U) |
638 | 214 ob A U b x = record { obj = b ; hom = ub A U b x} |
215 fArrow : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) ) {a b : Obj A} (f : Hom A a b) (x : FObj U a ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
216 → Hom ( K A Sets * ↓ U) ( ob A U a x ) (ob A U b (FMap U f x) ) |
638 | 217 fArrow A U {a} {b} f x = record { arrow = f ; comm = fArrowComm a b f x } |
218 where | |
219 fArrowComm1 : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) → (y : * ) → FMap U f ( ub A U a x y ) ≡ ub A U b (FMap U f x) y | |
220 fArrowComm1 a b f x OneObj = refl | |
221 fArrowComm : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) → | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
222 Sets [ Sets [ FMap U f o hom (ob A U a x) ] ≈ Sets [ hom (ob A U b (FMap U f x)) o FMap (K A Sets *) f ] ] |
638 | 223 fArrowComm a b f x = extensionality Sets ( λ y → begin |
224 ( Sets [ FMap U f o hom (ob A U a x) ] ) y | |
225 ≡⟨⟩ | |
226 FMap U f ( hom (ob A U a x) y ) | |
227 ≡⟨⟩ | |
228 FMap U f ( ub A U a x y ) | |
229 ≡⟨ fArrowComm1 a b f x y ⟩ | |
230 ub A U b (FMap U f x) y | |
231 ≡⟨⟩ | |
232 hom (ob A U b (FMap U f x)) y | |
233 ∎ ) where | |
234 open import Relation.Binary.PropositionalEquality | |
235 open ≡-Reasoning | |
236 | |
635
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
237 |
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
238 -- if K{*}↓U has initial Obj, U is representable |
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
239 |
636 | 240 UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
1106 | 241 (U : Functor (Category.op A) (Sets {c₂}) ) |
242 ( i : Obj ( K (Category.op A) Sets * ↓ U) ) | |
243 (In : HasInitialObject ( K (Category.op A) Sets * ↓ U) i ) | |
244 → Representable A (≡←≈ A) U (obj i) | |
636 | 245 UisRepresentable A U i In = record { |
627 | 246 repr→ = record { TMap = tmap1 ; isNTrans = record { commute = comm1 } } |
626 | 247 ; repr← = record { TMap = tmap2 ; isNTrans = record { commute = comm2 } } |
638 | 248 ; reprId→ = iso→ |
249 ; reprId← = iso← | |
626 | 250 } where |
1106 | 251 opA = Category.op A |
252 comm11 : (a b : Obj opA) (f : Hom opA a b) (y : FObj U a ) → | |
253 ( Sets [ FMap (Yoneda A (≡←≈ A) (obj i)) f o ( λ x → arrow (initial In (ob opA U a x))) ] ) y | |
254 ≡ (Sets [ ( λ x → arrow (initial In (ob opA U b x))) o FMap U f ] ) y | |
638 | 255 comm11 a b f y = begin |
1106 | 256 ( Sets [ FMap (Yoneda A (≡←≈ A) (obj i)) f o ( λ x → arrow (initial In (ob opA U a x))) ] ) y |
631 | 257 ≡⟨⟩ |
1106 | 258 opA [ f o arrow (initial In (ob opA U a y)) ] |
631 | 259 ≡⟨⟩ |
1106 | 260 opA [ arrow ( fArrow opA U f y ) o arrow (initial In (ob opA U a y)) ] |
261 ≡⟨ (≡←≈ A) ( uniqueness In {ob opA U b (FMap U f y) } (( K opA Sets * ↓ U) [ fArrow opA U f y o initial In (ob opA U a y)] ) ) ⟩ | |
262 arrow (initial In (ob opA U b (FMap U f y) )) | |
629 | 263 ≡⟨⟩ |
1106 | 264 (Sets [ ( λ x → arrow (initial In (ob opA U b x))) o FMap U f ] ) y |
629 | 265 ∎ where |
266 open import Relation.Binary.PropositionalEquality | |
267 open ≡-Reasoning | |
1106 | 268 tmap1 : (b : Obj A) → Hom Sets (FObj U b) (FObj (Yoneda A (≡←≈ A) (obj i)) b) |
269 tmap1 b x = arrow ( initial In (ob opA U b x ) ) | |
270 comm1 : {a b : Obj opA} {f : Hom opA a b} → Sets [ Sets [ FMap (Yoneda A (≡←≈ A) (obj i)) f o tmap1 a ] ≈ Sets [ tmap1 b o FMap U f ] ] | |
626 | 271 comm1 {a} {b} {f} = let open ≈-Reasoning Sets in begin |
1106 | 272 FMap (Yoneda A (≡←≈ A) (obj i)) f o tmap1 a |
629 | 273 ≈⟨⟩ |
1106 | 274 FMap (Yoneda A (≡←≈ A) (obj i)) f o ( λ x → arrow (initial In ( ob opA U a x ))) |
629 | 275 ≈⟨ extensionality Sets ( λ y → comm11 a b f y ) ⟩ |
1106 | 276 ( λ x → arrow (initial In (ob opA U b x))) o FMap U f |
629 | 277 ≈⟨⟩ |
626 | 278 tmap1 b o FMap U f |
279 ∎ | |
1106 | 280 comm21 : (a b : Obj opA) (f : Hom opA a b) ( y : Hom opA (obj i) a ) → |
636 | 281 (Sets [ FMap U f o (λ x → FMap U x (hom i OneObj))] ) y ≡ |
1106 | 282 (Sets [ ( λ x → (FMap U x ) (hom i OneObj)) o (λ x → opA [ f o x ] ) ] ) y |
626 | 283 comm21 a b f y = begin |
636 | 284 FMap U f ( FMap U y (hom i OneObj)) |
285 ≡⟨ ≡-cong ( λ k → k (hom i OneObj)) ( sym ( IsFunctor.distr (isFunctor U ) ) ) ⟩ | |
1106 | 286 (FMap U (opA [ f o y ] ) ) (hom i OneObj) |
626 | 287 ∎ where |
288 open import Relation.Binary.PropositionalEquality | |
289 open ≡-Reasoning | |
1106 | 290 tmap2 : (b : Obj A) → Hom Sets (FObj (Yoneda A (≡←≈ A) (obj i)) b) (FObj U b) |
636 | 291 tmap2 b x = ( FMap U x ) ( hom i OneObj ) |
1106 | 292 comm2 : {a b : Obj opA} {f : Hom opA a b} → Sets [ Sets [ FMap U f o tmap2 a ] ≈ |
293 Sets [ tmap2 b o FMap (Yoneda A (≡←≈ A) (obj i)) f ] ] | |
626 | 294 comm2 {a} {b} {f} = let open ≈-Reasoning Sets in begin |
295 FMap U f o tmap2 a | |
296 ≈⟨⟩ | |
636 | 297 FMap U f o ( λ x → ( FMap U x ) ( hom i OneObj ) ) |
626 | 298 ≈⟨ extensionality Sets ( λ y → comm21 a b f y ) ⟩ |
1106 | 299 ( λ x → ( FMap U x ) ( hom i OneObj ) ) o ( λ x → opA [ f o x ] ) |
636 | 300 ≈⟨⟩ |
1106 | 301 ( λ x → ( FMap U x ) ( hom i OneObj ) ) o FMap (Yoneda A (≡←≈ A) (obj i)) f |
636 | 302 ≈⟨⟩ |
1106 | 303 tmap2 b o FMap (Yoneda A (≡←≈ A) (obj i)) f |
637
946ea019a2e7
if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
636
diff
changeset
|
304 ∎ |
1106 | 305 iso0 : ( x : Obj opA) ( y : Hom opA (obj i ) x ) ( z : * ) |
306 → ( Sets [ FMap U y o hom i ] ) z ≡ ( Sets [ ub opA U x (FMap U y (hom i OneObj)) o FMap (K opA Sets *) y ] ) z | |
637
946ea019a2e7
if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
636
diff
changeset
|
307 iso0 x y OneObj = refl |
1106 | 308 iso→ : {x : Obj opA} → Sets [ Sets [ tmap1 x o tmap2 x ] ≈ id1 Sets (FObj (Yoneda A (≡←≈ A) (obj i)) x) ] |
309 iso→ {x} = let open ≈-Reasoning opA in extensionality Sets ( λ ( y : Hom opA (obj i ) x ) → (≡←≈ A) ( begin | |
636 | 310 ( Sets [ tmap1 x o tmap2 x ] ) y |
626 | 311 ≈⟨⟩ |
1106 | 312 arrow ( initial In (ob opA U x (( FMap U y ) ( hom i OneObj ) ))) |
637
946ea019a2e7
if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
636
diff
changeset
|
313 ≈↑⟨ uniqueness In (record { arrow = y ; comm = extensionality Sets ( λ (z : * ) → iso0 x y z ) } ) ⟩ |
636 | 314 y |
315 ∎ )) | |
316 iso← : {x : Obj A} → Sets [ Sets [ tmap2 x o tmap1 x ] ≈ id1 Sets (FObj U x) ] | |
317 iso← {x} = extensionality Sets ( λ (y : FObj U x ) → ( begin | |
318 ( Sets [ tmap2 x o tmap1 x ] ) y | |
319 ≡⟨⟩ | |
1106 | 320 ( FMap U ( arrow ( initial In (ob opA U x y ) )) ) ( hom i OneObj ) |
321 ≡⟨ ≡-cong (λ k → k OneObj) ( comm ( initial In (ob opA U x y ) )) ⟩ | |
322 hom (ob opA U x y) OneObj | |
637
946ea019a2e7
if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
636
diff
changeset
|
323 ≡⟨⟩ |
636 | 324 y |
325 ∎ ) ) where | |
326 open import Relation.Binary.PropositionalEquality | |
327 open ≡-Reasoning | |
645 | 328 |
647 | 329 ------------- |
330 -- Adjoint Functor Theorem | |
331 -- | |
332 | |
648 | 333 module Adjoint-Functor {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) |
334 (U : Functor A B ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
335 (i : (b : Obj B) → Obj ( K A B b ↓ U) ) |
695 | 336 (In : (b : Obj B) → HasInitialObject ( K A B b ↓ U) (i b) ) |
663
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
662
diff
changeset
|
337 where |
648 | 338 |
649 | 339 tmap-η : (y : Obj B) → Hom B y (FObj U (obj (i y))) |
340 tmap-η y = hom (i y) | |
648 | 341 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
342 sobj : {a : Obj B} {b : Obj A} → ( f : Hom B a (FObj U b) ) → CommaObj (K A B a) U |
652 | 343 sobj {a} {b} f = record {obj = b; hom = f } |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
344 solution : {a : Obj B} {b : Obj A} → ( f : Hom B a (FObj U b) ) → CommaHom (K A B a) U (i a) (sobj f) |
652 | 345 solution {a} {b} f = initial (In a) (sobj f) |
647 | 346 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
347 ηf : (a b : Obj B) → ( f : Hom B a b ) → Obj ( K A B a ↓ U) |
654 | 348 ηf a b f = sobj ( B [ tmap-η b o f ] ) |
349 | |
653 | 350 univ : {a : Obj B} {b : Obj A} → (f : Hom B a (FObj U b)) |
652 | 351 → B [ B [ FMap U (arrow (solution f)) o tmap-η a ] ≈ f ] |
653 | 352 univ {a} {b} f = let open ≈-Reasoning B in begin |
353 FMap U (arrow (solution f)) o tmap-η a | |
354 ≈⟨ comm (initial (In a) (sobj f)) ⟩ | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
355 hom (sobj f) o FMap (K A B a) (arrow (initial (In a) (sobj f))) |
653 | 356 ≈⟨ idR ⟩ |
357 f | |
358 ∎ | |
652 | 359 |
654 | 360 unique : {a : Obj B} { b : Obj A } → { f : Hom B a (FObj U b) } → { g : Hom A (obj (i a)) b} → |
361 B [ B [ FMap U g o tmap-η a ] ≈ f ] → A [ arrow (solution f) ≈ g ] | |
362 unique {a} {b} {f} {g} ugη=f = let open ≈-Reasoning A in begin | |
363 arrow (solution f) | |
1106 | 364 ≈↑⟨ ≈←≡ ( cong (λ k → arrow (solution k)) ( (≡←≈ B) ugη=f )) ⟩ |
654 | 365 arrow (solution (B [ FMap U g o tmap-η a ] )) |
366 ≈↑⟨ uniqueness (In a) (record { arrow = g ; comm = comm1 }) ⟩ | |
367 g | |
368 ∎ where | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
369 comm1 : B [ B [ FMap U g o hom (i a) ] ≈ B [ B [ FMap U g o tmap-η a ] o FMap (K A B a) g ] ] |
654 | 370 comm1 = let open ≈-Reasoning B in sym idR |
645 | 371 |
690
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
372 UM : UniversalMapping B A U |
655 | 373 UM = record { |
690
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
374 F = λ b → obj (i b) ; |
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
375 η = tmap-η ; |
655 | 376 _* = λ f → arrow (solution f) ; |
377 isUniversalMapping = record { | |
378 universalMapping = λ {a} {b} {f} → univ f ; | |
379 uniquness = unique | |
380 }} | |
381 | |
659 | 382 -- Adjoint can be built as follows (same as univeral-mapping.agda ) |
383 -- | |
384 -- F : Functor B A | |
385 -- F = record { | |
386 -- FObj = λ b → obj (i b) | |
387 -- ; FMap = λ {x} {y} (f : Hom B x y ) → arrow (solution ( B [ tmap-η y o f ] )) | |
645 | 388 |
659 | 389 -- nat-ε : NTrans A A (F ○ U) identityFunctor |
390 -- nat-ε = record { | |
391 -- TMap = λ x → arrow ( solution (id1 B (FObj U x))) | |
645 | 392 |
659 | 393 -- nat-η : NTrans B B identityFunctor (U ○ F) |
394 -- nat-η = record { TMap = λ y → tmap-η y ; isNTrans = record { commute = comm1 } } where | |
645 | 395 |
659 | 396 -- FisLeftAdjoint : Adjunction B A U F nat-η nat-ε |
397 -- FisLeftAdjoint = record { isAdjunction = record { | |
398 | |
1107 | 399 open import Data.Product renaming (_×_ to _∧_ ) hiding ( <_,_> ) |
400 open import Category.Constructions.Product | |
401 | |
402 module pro-ex {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( _*_ : Obj A → Obj A → Obj A ) | |
403 (*-iso : (a b c x : Obj A) → IsoS A (A × A) x c (x , x ) (a , b )) where | |
404 | |
405 -- Hom A x c ≅ ( Hom A x a ) * ( Hom A x b ) | |
406 | |
407 open IsoS | |
408 | |
409 import Axiom.Extensionality.Propositional | |
410 postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m | |
411 | |
412 open import Category.Cat | |
413 | |
414 *eq : {a b : Obj (A × A) } { x y : Hom (A × A) a b } → (x≈y : (A × A) [ x ≈ y ]) → x ≡ y | |
415 *eq {a} {b} {x1 , x2} {y1 , y2} (eq1 , eq2) = cong₂ _,_ ( ≡←≈ A eq1 ) ( ≡←≈ A eq2 ) | |
416 | |
417 opA = Category.op A | |
418 prodFunctor : Functor (Category.op A) (Category.op (A × A)) | |
419 prodFunctor = record { | |
420 FObj = λ x → x , x | |
421 ; FMap = λ {x} {y} (f : Hom opA x y ) → f , f | |
422 ; isFunctor = record { identity = ? ; distr = ? ; ≈-cong = ? } | |
423 } | |
424 t00 : (a c d e : Obj opA) (f : Hom opA a c ) → Hom (A × A) (c , c) (d , e ) | |
425 t00 a c d e f = ≅→ (*-iso d e a c) f | |
426 nat-* : {a b c : Obj A} → NTrans (Category.op A) (Sets {c₂}) (Yoneda A (≡←≈ A) c ) (Yoneda (A × A) *eq (a , b) ○ prodFunctor ) | |
427 nat-* {a} {b} {c} = record { TMap = λ z f → ≅→ (*-iso a b c z) f ; isNTrans = record { commute = nat-comm } } where | |
428 nat-comm : {x y : Obj opA} {f : Hom opA x y} → | |
429 Sets [ Sets [ (λ g → opA [ f o proj₁ g ] , opA [ f o proj₂ g ]) o (λ f₁ → ≅→ (*-iso a b c x) f₁) ] | |
430 ≈ Sets [ (λ f₁ → ≅→ (*-iso a b c y) f₁) o (λ g → opA [ f o g ]) ] ] | |
431 nat-comm {x} {y} {f} = f-extensionality (λ g → ( begin | |
432 opA [ f o proj₁ (≅→ (*-iso a b c x) g) ] , opA [ f o proj₂ (≅→ (*-iso a b c x) g) ] ≡⟨ ? ⟩ | |
433 proj₁ (≅→ (*-iso a b c y) ( opA [ f o g ] )) , proj₂ (≅→ (*-iso a b c y) ( opA [ f o g ] ) ) ≡⟨ refl ⟩ | |
434 ≅→ (*-iso a b c y) ( opA [ f o g ] ) ∎ ) ) where open ≡-Reasoning | |
435 | |
436 | |
659 | 437 -- end |
438 |