Mercurial > hg > Members > kono > Proof > category
annotate yoneda.agda @ 186:b2e01aa0924d
y-nat (FMap of Yoneda Functor )
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 28 Aug 2013 23:32:24 +0900 |
parents | 173d078ee443 |
children | 47d6a9bc3933 |
rev | line source |
---|---|
178 | 1 open import Category -- https://github.com/konn/category-agda |
2 open import Level | |
3 open import Category.Sets | |
4 module yoneda { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where | |
5 | |
6 open import HomReasoning | |
7 open import cat-utility | |
179 | 8 open import Relation.Binary.Core |
9 open import Relation.Binary | |
10 | |
178 | 11 |
12 -- Contravariant Functor : op A → Sets ( Obj of Sets^{A^op} ) | |
179 | 13 open Functor |
178 | 14 |
181 | 15 -- A is Locally small |
16 postulate ≈-≡ : {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y | |
17 | |
18 import Relation.Binary.PropositionalEquality | |
19 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) | |
20 postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ | |
21 | |
22 | |
182
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
23 CF' : (a : Obj A) → Functor A Sets |
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
24 CF' a = record { |
178 | 25 FObj = λ b → Hom A a b |
180
2d983d843e29
no yellow on co-Contravariant Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
179
diff
changeset
|
26 ; FMap = λ {b c : Obj A } → λ ( f : Hom A b c ) → λ (g : Hom A a b ) → A [ f o g ] |
178 | 27 ; isFunctor = record { |
180
2d983d843e29
no yellow on co-Contravariant Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
179
diff
changeset
|
28 identity = identity |
2d983d843e29
no yellow on co-Contravariant Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
179
diff
changeset
|
29 ; distr = λ {a} {b} {c} {f} {g} → distr1 a b c f g |
178 | 30 ; ≈-cong = cong1 |
31 } | |
32 } where | |
181 | 33 lemma-CF1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x |
34 lemma-CF1 {b} x = let open ≈-Reasoning (A) in ≈-≡ idL | |
180
2d983d843e29
no yellow on co-Contravariant Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
179
diff
changeset
|
35 identity : {b : Obj A} → Sets [ (λ (g : Hom A a b ) → A [ id1 A b o g ]) ≈ ( λ g → g ) ] |
181 | 36 identity {b} = extensionality lemma-CF1 |
37 lemma-CF2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c) → (x : Hom A a a₁ )→ A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x | |
38 lemma-CF2 a₁ b c f g x = let open ≈-Reasoning (A) in ≈-≡ ( begin | |
39 A [ A [ g o f ] o x ] | |
40 ≈↑⟨ assoc ⟩ | |
41 A [ g o A [ f o x ] ] | |
42 ≈⟨⟩ | |
43 ( λ x → A [ g o x ] ) ( ( λ x → A [ f o x ] ) x ) | |
44 ∎ ) | |
180
2d983d843e29
no yellow on co-Contravariant Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
179
diff
changeset
|
45 distr1 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c) → |
2d983d843e29
no yellow on co-Contravariant Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
179
diff
changeset
|
46 Sets [ (λ g₁ → A [ A [ g o f ] o g₁ ]) ≈ Sets [ (λ g₁ → A [ g o g₁ ]) o (λ g₁ → A [ f o g₁ ]) ] ] |
181 | 47 distr1 a b c f g = extensionality ( λ x → lemma-CF2 a b c f g x ) |
180
2d983d843e29
no yellow on co-Contravariant Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
179
diff
changeset
|
48 cong1 : {A₁ B : Obj A} {f g : Hom A A₁ B} → A [ f ≈ g ] → Sets [ (λ g₁ → A [ f o g₁ ]) ≈ (λ g₁ → A [ g o g₁ ]) ] |
181 | 49 cong1 eq = extensionality ( λ x → ( ≈-≡ ( |
50 (IsCategory.o-resp-≈ ( Category.isCategory A )) ( IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A ))) eq ))) | |
178 | 51 |
182
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
52 open import Function |
178 | 53 |
184 | 54 CF : {a : Obj A} → Functor (Category.op A) (Sets {c₂}) |
55 CF {a} = record { | |
182
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
56 FObj = λ b → Hom (Category.op A) a b |
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
57 ; FMap = λ {b c : Obj A } → λ ( f : Hom A c b ) → λ (g : Hom A b a ) → (Category.op A) [ f o g ] |
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
58 ; isFunctor = record { |
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
59 identity = \{b} → extensionality ( λ x → lemma-CF1 {b} x ) |
183
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
60 ; distr = λ {a} {b} {c} {f} {g} → extensionality ( λ x → lemma-CF2 a b c f g x ) |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
61 ; ≈-cong = λ eq → extensionality ( λ x → lemma-CF3 x eq ) |
182
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
62 } |
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
63 } where |
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
64 lemma-CF1 : {b : Obj A } → (x : Hom A b a) → (Category.op A) [ id1 A b o x ] ≡ x |
346e8eb35ec3
contravariant continue ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
181
diff
changeset
|
65 lemma-CF1 {b} x = let open ≈-Reasoning (Category.op A) in ≈-≡ idL |
183
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
66 lemma-CF2 : (a₁ b c : Obj A) (f : Hom A b a₁) (g : Hom A c b ) → (x : Hom A a₁ a )→ |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
67 Category.op A [ Category.op A [ g o f ] o x ] ≡ (Sets [ _[_o_] (Category.op A) g o _[_o_] (Category.op A) f ]) x |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
68 lemma-CF2 a₁ b c f g x = let open ≈-Reasoning (Category.op A) in ≈-≡ ( begin |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
69 Category.op A [ Category.op A [ g o f ] o x ] |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
70 ≈↑⟨ assoc ⟩ |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
71 Category.op A [ g o Category.op A [ f o x ] ] |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
72 ≈⟨⟩ |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
73 ( λ x → Category.op A [ g o x ] ) ( ( λ x → Category.op A [ f o x ] ) x ) |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
74 ∎ ) |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
75 lemma-CF3 : {b c : Obj A} {f g : Hom A c b } → (x : Hom A b a ) → A [ f ≈ g ] → Category.op A [ f o x ] ≡ Category.op A [ g o x ] |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
76 lemma-CF3 {_} {_} {f} {g} x eq = let open ≈-Reasoning (Category.op A) in ≈-≡ ( begin |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
77 Category.op A [ f o x ] |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
78 ≈⟨ resp refl-hom eq ⟩ |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
79 Category.op A [ g o x ] |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
80 ∎ ) |
ea6fc610b480
Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
182
diff
changeset
|
81 |
184 | 82 YObj = Functor (Category.op A) (Sets {c₂}) |
83 YHom = λ (f : YObj ) → λ (g : YObj ) → NTrans (Category.op A) Sets f g | |
84 | |
186
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
85 y-map : ( a b : Obj A ) → (f : Hom A a b ) → (x : Obj (Category.op A)) → FObj (CF {a}) x → FObj (CF {b} ) x |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
86 y-map a b f x = λ ( g : Hom A x a ) → A [ f o g ] -- ( h : Hom A x b ) |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
87 |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
88 y-nat : {a b : Obj A } → (f : Hom A a b ) → YHom (CF {a}) (CF {b}) |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
89 y-nat {a} {b} f = record { TMap = y-map a b f ; isNTrans = isNTrans1 {a} {b} f } where |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
90 lemma-CF5 : {a₁ b₁ : Obj (Category.op A)} {g : Hom (Category.op A) a₁ b₁} → {a b : Obj A } → (x : Hom A a₁ a) → (f : Hom A a b ) → |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
91 (Sets [ FMap CF g o y-map a b f a₁ ]) x ≡ (Sets [ y-map a b f b₁ o FMap CF g ]) x |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
92 lemma-CF5 {a₁} {b₁} {g} {a} {b} x f = let open ≈-Reasoning (A) in ≈-≡ ( begin |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
93 A [ A [ f o x ] o g ] |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
94 ≈↑⟨ assoc ⟩ |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
95 A [ f o A [ x o g ] ] |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
96 ∎ ) |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
97 lemma-CF4 : {a₁ b₁ : Obj (Category.op A)} {g : Hom (Category.op A) a₁ b₁} → {a b : Obj A } → (f : Hom A a b ) → |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
98 Sets [ Sets [ FMap CF g o y-map a b f a₁ ] ≈ |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
99 Sets [ y-map a b f b₁ o FMap CF g ] ] |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
100 lemma-CF4 {a₁} {b₁} {g} {a} {b} f = let open ≈-Reasoning (Sets {c₂})in begin |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
101 Sets [ FMap CF g o y-map a b f a₁ ] |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
102 ≈⟨ extensionality ( λ x → lemma-CF5 {a₁} {b₁} {g} {a} {b} x f) ⟩ |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
103 Sets [ y-map a b f b₁ o FMap CF g ] |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
104 ∎ |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
105 isNTrans1 : {a b : Obj A } → (f : Hom A a b ) → IsNTrans (Category.op A) (Sets {c₂}) (CF {a}) (CF {b}) (y-map a b f ) |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
106 isNTrans1 {a} {b} f = record { commute = λ{a₁ b₁ g } → lemma-CF4 {a₁} {b₁} {g} {a} {b} f } |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
107 |
184 | 108 open NTrans |
109 Yid : {a : YObj} → YHom a a | |
110 Yid {a} = record { TMap = \a -> \x -> x ; isNTrans = isNTrans1 {a} } where | |
111 isNTrans1 : {a : YObj } → IsNTrans (Category.op A) (Sets {c₂}) a a (\a -> \x -> x ) | |
112 isNTrans1 {a} = record { commute = refl } | |
113 | |
114 _+_ : {a b c : YObj} → YHom b c → YHom a b → YHom a c | |
185 | 115 _+_{a} {b} {c} f g = record { TMap = λ x → Sets [ TMap f x o TMap g x ] ; isNTrans = isNTrans1 } where |
116 commute1 : (a b c : YObj ) (f : YHom b c) (g : YHom a b ) | |
117 (a₁ b₁ : Obj (Category.op A)) (h : Hom (Category.op A) a₁ b₁) → | |
118 Sets [ Sets [ FMap c h o Sets [ TMap f a₁ o TMap g a₁ ] ] ≈ | |
119 Sets [ Sets [ TMap f b₁ o TMap g b₁ ] o FMap a h ] ] | |
120 commute1 a b c f g a₁ b₁ h = let open ≈-Reasoning (Sets {c₂})in begin | |
121 Sets [ FMap c h o Sets [ TMap f a₁ o TMap g a₁ ] ] | |
122 ≈⟨ assoc {_} {_} {_} {_} {FMap c h } {TMap f a₁} {TMap g a₁} ⟩ | |
123 Sets [ Sets [ FMap c h o TMap f a₁ ] o TMap g a₁ ] | |
124 ≈⟨ car (nat f) ⟩ | |
125 Sets [ Sets [ TMap f b₁ o FMap b h ] o TMap g a₁ ] | |
126 ≈↑⟨ assoc {_} {_} {_} {_} { TMap f b₁} {FMap b h } {TMap g a₁}⟩ | |
127 Sets [ TMap f b₁ o Sets [ FMap b h o TMap g a₁ ] ] | |
128 ≈⟨ cdr {_} {_} {_} {_} {_} { TMap f b₁} (nat g) ⟩ | |
129 Sets [ TMap f b₁ o Sets [ TMap g b₁ o FMap a h ] ] | |
130 ≈↑⟨ assoc {_} {_} {_} {_} {TMap f b₁} {TMap g b₁} { FMap a h} ⟩ | |
131 Sets [ Sets [ TMap f b₁ o TMap g b₁ ] o FMap a h ] | |
132 ∎ | |
133 isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) a c (λ x → Sets [ TMap f x o TMap g x ]) | |
134 isNTrans1 = record { commute = λ {a₁ b₁ h} → commute1 a b c f g a₁ b₁ h } | |
184 | 135 |
186
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
136 _==_ : {a b : YObj} → YHom a b → YHom a b → Set (c₂ ⊔ c₁) |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
137 _==_ f g = TMap f ≡ TMap g |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
138 |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
139 infix 4 _==_ |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
140 |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
141 isSetsAop : IsCategory YObj YHom _==_ _+_ Yid |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
142 isSetsAop = record { isEquivalence = record {refl = refl ; trans = ≡-trans ; sym = ≡-sym} |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
143 ; identityL = refl |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
144 ; identityR = refl |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
145 ; o-resp-≈ = λ{a b c f g h i } → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
146 ; associative = refl |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
147 } where |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
148 o-resp-≈ : {A₁ B C : YObj} {f g : YHom A₁ B} {h i : YHom B C} → |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
149 f == g → h == i → h + f == i + g |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
150 o-resp-≈ refl refl = refl |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
151 |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
152 SetsAop : Category (suc (ℓ ⊔ (suc c₂) ⊔ c₁)) (suc ( ℓ ⊔ (suc c₂) ⊔ c₁)) (c₂ ⊔ c₁) |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
153 SetsAop = |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
154 record { Obj = YObj |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
155 ; Hom = YHom |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
156 ; _o_ = _+_ |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
157 ; _≈_ = _==_ |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
158 ; Id = Yid |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
159 ; isCategory = isSetsAop |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
160 } |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
161 |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
162 YonedaFunctor : Functor A SetsAop |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
163 YonedaFunctor = record { |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
164 FObj = λ a → CF {a} |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
165 ; FMap = λ f → y-nat f |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
166 ; isFunctor = record { |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
167 identity = {!!} |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
168 ; distr = {!!} |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
169 ; ≈-cong = {!!} |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
170 } |
b2e01aa0924d
y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
185
diff
changeset
|
171 } |
184 | 172 |
185 | 173 |