annotate hoareBinaryTree.agda @ 683:aeddbe37d9fc

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 29 Nov 2021 22:45:33 +0900 (2021-11-29)
parents cae136ce7352
children 33bd83e5168f
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
1 module hoareBinaryTree where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
2
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
3 open import Level renaming (zero to Z ; suc to succ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
4
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
5 open import Data.Nat hiding (compare)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
6 open import Data.Nat.Properties as NatProp
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
7 open import Data.Maybe
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
8 -- open import Data.Maybe.Properties
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
9 open import Data.Empty
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
10 open import Data.List
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
11 open import Data.Product
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
12
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
13 open import Function as F hiding (const)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
14
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
15 open import Relation.Binary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
16 open import Relation.Binary.PropositionalEquality
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
17 open import Relation.Nullary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
18 open import logic
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
19
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
20
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
21 _iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
22 d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d))
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
23
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
24 iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
25 iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ }
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
26
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
27 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
28 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
29 -- no children , having left node , having right node , having both
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
30 --
597
ryokka
parents: 596
diff changeset
31 data bt {n : Level} (A : Set n) : Set n where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
32 leaf : bt A
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
33 node : (key : ℕ) → (value : A) →
610
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
34 (left : bt A ) → (right : bt A ) → bt A
600
016a8deed93d fix old binary tree
ryokka
parents: 597
diff changeset
35
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
36 node-key : {n : Level} {A : Set n} → bt A → Maybe ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
37 node-key (node key _ _ _) = just key
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
38 node-key _ = nothing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
39
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
40 node-value : {n : Level} {A : Set n} → bt A → Maybe A
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
41 node-value (node _ value _ _) = just value
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
42 node-value _ = nothing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
43
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
44 bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
45 bt-depth leaf = 0
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
46 bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ ))
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
47
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
48 find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A)
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
49 → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
50 find key leaf st _ exit = exit leaf st
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
51 find key (node key₁ v1 tree tree₁) st next exit with <-cmp key key₁
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
52 find key n st _ exit | tri≈ ¬a b ¬c = exit n st
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
53 find key n@(node key₁ v1 tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
54 find key n@(node key₁ v1 tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st)
597
ryokka
parents: 596
diff changeset
55
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
56 {-# TERMINATING #-}
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
57 find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
58 find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
59 find-loop1 : bt A → List (bt A) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
60 find-loop1 tree st = find key tree st find-loop1 exit
600
016a8deed93d fix old binary tree
ryokka
parents: 597
diff changeset
61
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
62 replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
63 replaceNode k v1 leaf next = next (node k v1 leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
64 replaceNode k v1 (node key value t t₁) next = next (node k v1 t t₁)
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
65
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
66 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
67 replace key value repl [] next exit = exit repl -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
68 replace key value repl (leaf ∷ []) next exit = exit repl -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
69 replace key value repl (node key₁ value₁ left right ∷ []) next exit with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
70 ... | tri< a ¬b ¬c = exit (node key₁ value₁ repl right )
664
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
71 ... | tri≈ ¬a b ¬c = exit (node key₁ value left right )
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
72 ... | tri> ¬a ¬b c = exit (node key₁ value₁ left repl )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
73 replace key value repl (leaf ∷ st) next exit = next key value repl st -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
74 replace key value repl (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
75 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
76 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
77 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
78
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
79 {-# TERMINATING #-}
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
80 replace-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (exit : bt A → t) → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
81 replace-loop {_} {_} {A} {t} key value tree st exit = replace-loop1 key value tree st where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
82 replace-loop1 : (key : ℕ) → (value : A) → bt A → List (bt A) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
83 replace-loop1 key value tree st = replace key value tree st replace-loop1 exit
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
84
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
85 insertTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
86 insertTree tree key value exit = find-loop key tree ( tree ∷ [] ) $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
87
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
88 insertTest1 = insertTree leaf 1 1 (λ x → x )
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
89 insertTest2 = insertTree insertTest1 2 1 (λ x → x )
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
90 insertTest3 = insertTree insertTest2 3 2 (λ x → x )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
91 insertTest4 = insertTree insertTest3 2 2 (λ x → x )
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
92
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
93 open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_)
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
94
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
95 data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
96 t-leaf : treeInvariant leaf
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
97 t-single : (key : ℕ) → (value : A) → treeInvariant (node key value leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
98 t-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key₁ value₁ t₁ t₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
99 → treeInvariant (node key value leaf (node key₁ value₁ t₁ t₂))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
100 t-left : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key₁ < key) → treeInvariant (node key value t₁ t₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
101 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) leaf )
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
102 t-node : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} → (key < key₁) → (key₁ < key₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
103 → treeInvariant (node key value t₁ t₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
104 → treeInvariant (node key₂ value₂ t₃ t₄)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
105 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄))
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
106
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
107 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
108 -- stack always contains original top at end
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
109 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
110 data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (top orig : bt A) → (stack : List (bt A)) → Set n where
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
111 s-single : {tree0 : bt A} → stackInvariant key tree0 tree0 (tree0 ∷ [])
653
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
112 s-right : {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)}
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
113 → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree tree0 (tree ∷ st)
653
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
114 s-left : {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)}
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
115 → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree₁ tree0 (tree₁ ∷ st)
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
116
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
117 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt A ) → Set n where
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
118 r-leaf : replacedTree key value leaf (node key value leaf leaf)
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
119 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁)
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
120 r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A}
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
121 → k < key → replacedTree key value t2 t → replacedTree key value (node k v1 t1 t2) (node k v1 t1 t)
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
122 r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A}
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
123 → k > key → replacedTree key value t1 t → replacedTree key value (node k v1 t1 t2) (node k v1 t t2)
652
8c7446829b99 new stack invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 651
diff changeset
124
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
125 add< : { i : ℕ } (j : ℕ ) → i < suc i + j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
126 add< {i} j = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
127 suc i ≤⟨ m≤m+n (suc i) j ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
128 suc i + j ∎ where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
129
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
130 treeTest1 : bt ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
131 treeTest1 = node 1 0 leaf (node 3 1 (node 2 5 (node 4 7 leaf leaf ) leaf) (node 5 5 leaf leaf))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
132 treeTest2 : bt ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
133 treeTest2 = node 3 1 (node 2 5 (node 4 7 leaf leaf ) leaf) (node 5 5 leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
134
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
135 treeInvariantTest1 : treeInvariant treeTest1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
136 treeInvariantTest1 = t-right (m≤m+n _ 1) (t-node (add< 0) (add< 1) (t-left (add< 1) (t-single 4 7)) (t-single 5 5) )
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
137
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
138 stack-top : {n : Level} {A : Set n} (stack : List (bt A)) → Maybe (bt A)
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
139 stack-top [] = nothing
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
140 stack-top (x ∷ s) = just x
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
141
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
142 stack-last : {n : Level} {A : Set n} (stack : List (bt A)) → Maybe (bt A)
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
143 stack-last [] = nothing
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
144 stack-last (x ∷ []) = just x
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
145 stack-last (x ∷ s) = stack-last s
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
146
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
147 stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] )
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
148 stackInvariantTest1 = s-right (add< 2) (s-single )
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
149
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
150 si-property0 : {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → {stack : List (bt A)} → stackInvariant key tree tree0 stack → ¬ ( stack ≡ [] )
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
151 si-property0 (s-single ) ()
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
152 si-property0 (s-right x si) ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
153 si-property0 (s-left x si) ()
665
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 664
diff changeset
154
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
155 si-property1 : {n : Level} {A : Set n} {key : ℕ} {tree tree0 tree1 : bt A} → {stack : List (bt A)} → stackInvariant key tree tree0 (tree1 ∷ stack)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
156 → tree1 ≡ tree
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
157 si-property1 (s-single ) = refl
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
158 si-property1 (s-right _ si) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
159 si-property1 (s-left _ si) = refl
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
160
663
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
161 si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → stackInvariant key tree tree0 stack
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
162 → stack-last stack ≡ just tree0
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
163 si-property-last key t t0 (t ∷ []) (s-single ) = refl
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
164 si-property-last key t t0 (.t ∷ x ∷ st) (s-right _ si ) with si-property1 si
663
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
165 ... | refl = si-property-last key x t0 (x ∷ st) si
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
166 si-property-last key t t0 (.t ∷ x ∷ st) (s-left _ si ) with si-property1 si
663
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
167 ... | refl = si-property-last key x t0 (x ∷ st) si
656
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 655
diff changeset
168
642
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
169 ti-right : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 tree₁ repl) → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
170 ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
171 ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-right x ti) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
172 ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-left x ti) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
173 ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
174
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
175 ti-left : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 repl tree₁ ) → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
176 ti-left {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
177 ti-left {_} {_} {_} {_} {key₁} {v1} (t-right x ti) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
178 ti-left {_} {_} {_} {_} {key₁} {v1} (t-left x ti) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
179 ti-left {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
180
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
181 stackTreeInvariant : {n : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
182 → treeInvariant tree → stackInvariant key sub tree stack → treeInvariant sub
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
183 stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-single ) = ti
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
184 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si ) = ti-right (si1 si) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
185 si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant (node key₁ v1 tree₁ sub )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
186 si1 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 tree₁ sub ) tree st ti si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
187 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-left _ si ) = ti-left ( si2 si) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
188 si2 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 sub tree₁ ) tree st → treeInvariant (node key₁ v1 sub tree₁ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
189 si2 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 sub tree₁ ) tree st ti si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
190
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
191 rt-property1 : {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf )
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
192 rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf ()
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
193 rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node ()
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
194 rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-right x rt) = λ ()
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
195 rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-left x rt) = λ ()
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
196
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
197 depth-1< : {i j : ℕ} → suc i ≤ suc (i Data.Nat.⊔ j )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
198 depth-1< {i} {j} = s≤s (m≤m⊔n _ j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
199
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
200 depth-2< : {i j : ℕ} → suc i ≤ suc (j Data.Nat.⊔ i )
650
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 649
diff changeset
201 depth-2< {i} {j} = s≤s (m≤n⊔m j i)
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
202
649
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
203 depth-3< : {i : ℕ } → suc i ≤ suc (suc i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
204 depth-3< {zero} = s≤s ( z≤n )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
205 depth-3< {suc i} = s≤s (depth-3< {i} )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
206
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
207
634
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
208 treeLeftDown : {n : Level} {A : Set n} {k : ℕ} {v1 : A} → (tree tree₁ : bt A )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
209 → treeInvariant (node k v1 tree tree₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
210 → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
211 treeLeftDown {n} {A} {_} {v1} leaf leaf (t-single k1 v1) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
212 treeLeftDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
213 treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
214 treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
216 treeRightDown : {n : Level} {A : Set n} {k : ℕ} {v1 : A} → (tree tree₁ : bt A )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
217 → treeInvariant (node k v1 tree tree₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
218 → treeInvariant tree₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
219 treeRightDown {n} {A} {_} {v1} .leaf .leaf (t-single _ .v1) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
220 treeRightDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
221 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
222 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
223
664
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
224 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
225 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
226 nat-<> : { x y : ℕ } → x < y → y < x → ⊥
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
227 nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x
633
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 632
diff changeset
228
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 632
diff changeset
229 open _∧_
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 632
diff changeset
230
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
231 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A))
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
232 → treeInvariant tree ∧ stackInvariant key tree tree0 stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
233 → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
234 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
235 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
236 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre (case1 refl)
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
237 findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
238 findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl)
664
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
239 findP {n} {_} {A} key (node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st)
663
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
240 ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
241 findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st)
664
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
242 findP1 a (x ∷ st) si = s-left a si
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
243 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2<
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
244
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
245 replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁)
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
246 replaceTree1 k v1 value (t-single .k .v1) = t-single k value
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
247 replaceTree1 k v1 value (t-right x t) = t-right x t
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
248 replaceTree1 k v1 value (t-left x t) = t-left x t
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
249 replaceTree1 k v1 value (t-node x x₁ t t₁) = t-node x x₁ t t₁
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
250
649
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
251 open import Relation.Binary.Definitions
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
252
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
253 lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
254 lemma3 refl ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
255 lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
256 lemma5 (s≤s z≤n) ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
257
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
258 child-replaced : {n : Level} {A : Set n} (key : ℕ) (value : A) (stack : List (bt A)) (tree tree0 : bt A) → stackInvariant key tree tree0 stack → bt A
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
259 child-replaced key value .(tree ∷ []) tree .tree s-single = tree
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
260 child-replaced key value .(leaf ∷ _) leaf tree0 (s-right x si) = leaf
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
261 child-replaced key value .(node key₁ value₁ tree tree₁ ∷ _) (node key₁ value₁ tree tree₁) tree0 (s-right x si) = tree
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
262 child-replaced key value .(leaf ∷ _) leaf tree0 (s-left x si) = leaf
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
263 child-replaced key value .(node key₁ value₁ tree tree₁ ∷ _) (node key₁ value₁ tree tree₁) tree0 (s-left x si) = tree₁
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
264
671
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
265 record replacePR {n : Level} {A : Set n} (key : ℕ) (value : A) (tree repl : bt A ) (stack : List (bt A)) (C : bt A → bt A → List (bt A) → Set n) : Set n where
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
266 field
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
267 tree0 : bt A
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
268 ti : treeInvariant tree0
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
269 si : stackInvariant key tree tree0 stack
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
270 ri : replacedTree key value (child-replaced key value stack tree tree0 si) repl
671
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
271 ci : C tree repl stack -- data continuation
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
272
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
273 replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A)
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
274 → (tree ≡ leaf ) ∨ ( node-key tree ≡ just key )
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
275 → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
276 replaceNodeP k v1 leaf C P next = next (node k v1 leaf leaf) (t-single k v1 ) r-leaf
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
277 replaceNodeP k v1 (node .k value t t₁) (case2 refl) P next = next (node k v1 t t₁) (replaceTree1 k value v1 P) r-node
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
278
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
279 replaceP : {n m : Level} {A : Set n} {t : Set m}
671
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
280 → (key : ℕ) → (value : A) → {tree : bt A} ( repl : bt A)
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
281 → (stack : List (bt A)) → replacePR key value tree repl stack (λ _ _ _ → Lift n ⊤)
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
282 → (next : ℕ → A → {tree1 : bt A } (repl : bt A) → (stack1 : List (bt A))
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
283 → replacePR key value tree1 repl stack1 (λ _ _ _ → Lift n ⊤) → length stack1 < length stack → t)
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
284 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
285 replaceP key value {tree} repl [] Pre next exit = ⊥-elim ( si-property0 (replacePR.si Pre) refl ) -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
286 replaceP key value {tree} repl (leaf ∷ []) Pre next exit with si-property-last _ _ _ _ (replacePR.si Pre)-- tree0 ≡ leaf
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
287 ... | refl = exit (replacePR.tree0 Pre) (node key value leaf leaf) ⟪ replacePR.ti Pre , r-leaf ⟫
678
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 677
diff changeset
288 replaceP key value {tree} repl (node key₁ value₁ left right ∷ []) Pre next exit = exit (replacePR.tree0 Pre) repl ⟪ replacePR.ti Pre , repl01 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 677
diff changeset
289 repl06 : child-replaced key value (node key₁ value₁ left right ∷ []) tree (replacePR.tree0 Pre) (replacePR.si Pre) ≡ node key₁ value₁ left right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 677
diff changeset
290 repl06 with replacePR.si Pre
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 677
diff changeset
291 ... | s-single = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 677
diff changeset
292 repl01 : replacedTree key value (replacePR.tree0 Pre) repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 677
diff changeset
293 repl01 with si-property1 (replacePR.si Pre) | si-property-last _ _ _ _ (replacePR.si Pre)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 677
diff changeset
294 repl01 | refl | refl = subst (λ k → replacedTree key value k repl) repl06 (replacePR.ri Pre)
671
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
295 replaceP {n} {_} {A} key value {tree} repl (leaf ∷ st@(x ∷ xs)) Pre next exit = {!!} -- can't happen
683
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
296 replaceP {n} {_} {A} key value {tree} repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre next exit with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
297 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st Post ≤-refl where
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
298 Post : replacePR key value tree1 (node key₁ value₁ repl right ) st (λ _ _ _ → Lift n ⊤)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
299 Post with replacePR.si Pre
681
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 680
diff changeset
300 ... | s-left x t = {!!} -- can't happen
683
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
301 ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl11 ; ci = lift tt } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
302 repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
303 repl09 = si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
304 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
305 repl10 with si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
306 ... | refl = si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
307 repl07 : (si : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
308 → node key₁ value₁ (child-replaced key value (node key₁ value₁ left right ∷ tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
309 (node key₁ value₁ left right) (replacePR.tree0 Pre) (replacePR.si Pre)) right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
310 ≡ child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
311 repl07 s-single = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
312 repl07 (s-right x si) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
313 repl07 (s-left x si) = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
314 repl11 : replacedTree key value (child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) repl10 ) (node key₁ value₁ repl right)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
315 repl11 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right)) (repl07 repl10) ( r-left a (replacePR.ri Pre))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
316 ... | tri≈ ¬a b ¬c = next key value {{!!}} (node key₁ value left right ) st {!!} ≤-refl -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
317 ... | tri> ¬a ¬b c = next key value {{!!}} (node key₁ value₁ left tree ) st {!!} ≤-refl
644
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
318
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
319 TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
320 → (r : Index) → (p : Invraiant r)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
321 → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
322 TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
323 ... | tri≈ ¬a b ¬c = loop r p (λ r1 p1 lt → ⊥-elim (lemma3 b lt) )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
324 ... | tri< a ¬b ¬c = loop r p (λ r1 p1 lt1 → TerminatingLoop1 (reduce r) r r1 (≤-step lt1) p1 lt1 ) where
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
325 TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j → Invraiant r1 → reduce r1 < reduce r → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
326 TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 p1 (λ r2 p1 lt1 → ⊥-elim (lemma5 n≤j lt1))
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
327 TerminatingLoop1 (suc j) r r1 n≤j p1 lt with <-cmp (reduce r1) (suc j)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
328 ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
329 ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
330 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c n≤j )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
331
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
332 open _∧_
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
333
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
334 RTtoTI0 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
335 → replacedTree key value tree repl → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
336 RTtoTI0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
337
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
338 RTtoTI1 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
339 → replacedTree key value tree repl → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
340 RTtoTI1 = {!!}
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
341
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
342 insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
343 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
610
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
344 insertTreeP {n} {m} {A} {t} tree key value P exit =
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
345 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
346 $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt )
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
347 $ λ t _ s P C → replaceNodeP key value t C (proj1 P)
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
348 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
349 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
350 (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫
644
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
351 $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
352 (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1 ⟫ ⟫ {!!} lt ) exit
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
353
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
354 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
355 top-value leaf = nothing
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
356 top-value (node key value tree tree₁) = just value
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
357
612
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
358 insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
359 insertTreeSpec0 _ _ _ = tt
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
360
627
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
361 record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
362 field
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
363 tree0 : bt A
622
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 621
diff changeset
364 ti : treeInvariant tree0
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
365 si : stackInvariant key tree tree0 stack
631
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 630
diff changeset
366 ci : C tree stack -- data continuation
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
367
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
368 findPP : {n m : Level} {A : Set n} {t : Set m}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
369 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A))
627
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
370 → (Pre : findPR key tree stack (λ t s → Lift n ⊤))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
371 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
372 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → t) → t
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
373 findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
374 findPP key (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
375 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
376 findPP {_} {_} {A} key n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c =
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
377 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
378 tree0 = findPR.tree0 Pre
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
379 findPP2 : (st : List (bt A)) → stackInvariant key {!!} tree0 st → stackInvariant key {!!} tree0 (node key₁ v1 tree tree₁ ∷ st)
623
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 622
diff changeset
380 findPP2 = {!!}
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
381 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁)
634
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
382 findPP1 = depth-1<
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
383 findPP key n@(node key₁ v1 tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st)
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
384 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁)
634
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
385 findPP2 = depth-2<
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
386
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
387 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
388 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
389 insertTreePP {n} {m} {A} {t} tree key value P exit =
627
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
390 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!}
630
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 629
diff changeset
391 $ λ p P loop → findPP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt )
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
392 $ λ t s _ P → replaceNodeP key value t {!!} {!!}
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
393 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
394 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
395 (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫
644
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
396 $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
397 (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1 ⟫ ⟫ {!!} lt ) exit
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
398
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
399 record findPC {n : Level} {A : Set n} (key1 : ℕ) (value1 : A) (tree : bt A ) (stack : List (bt A)) : Set n where
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
400 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
401 tree1 : bt A
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
402 ci : replacedTree key1 value1 tree tree1
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
403
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
404 findPPC : {n m : Level} {A : Set n} {t : Set m}
628
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 627
diff changeset
405 → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A))
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
406 → (Pre : findPR key tree stack (findPC key value))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
407 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (findPC key value) → bt-depth tree1 < bt-depth tree → t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
408 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (findPC key value) → t) → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
409 findPPC key value leaf st Pre next exit = exit leaf st (case1 refl) Pre
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
410 findPPC key value (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
411 findPPC key value n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
412 findPPC {_} {_} {A} key value n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c =
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
413 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = {!!} ; ci = {!!} } ) {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
414 findPPC key value n st P next exit | tri> ¬a ¬b c = {!!}
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
415
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
416 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
417 containsTree {n} {m} {A} {t} tree tree1 key value P RT =
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
418 TerminatingLoopS (bt A ∧ List (bt A) )
634
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
419 {λ p → findPR key (proj1 p) (proj2 p) (findPC key value ) } (λ p → bt-depth (proj1 p)) -- findPR key tree1 [] (findPC key value)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
420 ⟪ tree1 , [] ⟫ record { tree0 = tree ; ti = {!!} ; si = {!!} ; ci = record { tree1 = tree ; ci = RT } }
630
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 629
diff changeset
421 $ λ p P loop → findPPC key value (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt )
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
422 $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value (lemma6 t1 s1 found? P2) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
423 lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC key value)) → top-value t1 ≡ just value
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
424 lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1 (findPR.ci P2)) ( findPC.ci (findPR.ci P2)) (findPR.si P2) found? where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
425 lemma7 : (t1 : bt A) ( s1 : List (bt A) ) (tree0 tree1 : bt A) →
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
426 replacedTree key value t1 tree1 → stackInvariant key t1 tree0 s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
427 lemma7 = {!!}
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
428