431
|
1 {-# OPTIONS --allow-unsolved-metas #-}
|
|
2
|
|
3 open import Level
|
|
4 open import Ordinals
|
1218
|
5 module ZProduct {n : Level } (O : Ordinals {n}) where
|
431
|
6
|
|
7 open import zf
|
|
8 open import logic
|
|
9 import OD
|
|
10 import ODUtil
|
|
11 import OrdUtil
|
|
12
|
|
13 open import Relation.Nullary
|
|
14 open import Relation.Binary
|
|
15 open import Data.Empty
|
|
16 open import Relation.Binary
|
|
17 open import Relation.Binary.Core
|
|
18 open import Relation.Binary.PropositionalEquality
|
|
19 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
|
|
20
|
|
21 open OD O
|
|
22 open OD.OD
|
|
23 open OD.HOD
|
|
24 open ODAxiom odAxiom
|
|
25
|
|
26 open Ordinals.Ordinals O
|
|
27 open Ordinals.IsOrdinals isOrdinal
|
|
28 open Ordinals.IsNext isNext
|
|
29 open OrdUtil O
|
|
30 open ODUtil O
|
|
31
|
|
32 open _∧_
|
|
33 open _∨_
|
|
34 open Bool
|
|
35
|
|
36 open _==_
|
|
37
|
|
38 <_,_> : (x y : HOD) → HOD
|
|
39 < x , y > = (x , x ) , (x , y )
|
|
40
|
|
41 exg-pair : { x y : HOD } → (x , y ) =h= ( y , x )
|
|
42 exg-pair {x} {y} = record { eq→ = left ; eq← = right } where
|
|
43 left : {z : Ordinal} → odef (x , y) z → odef (y , x) z
|
|
44 left (case1 t) = case2 t
|
|
45 left (case2 t) = case1 t
|
|
46 right : {z : Ordinal} → odef (y , x) z → odef (x , y) z
|
|
47 right (case1 t) = case2 t
|
|
48 right (case2 t) = case1 t
|
|
49
|
|
50 ord≡→≡ : { x y : HOD } → & x ≡ & y → x ≡ y
|
|
51 ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong ( λ k → * k ) eq )
|
|
52
|
|
53 od≡→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y
|
|
54 od≡→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong ( λ k → & k ) eq )
|
|
55
|
|
56 eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' >
|
|
57 eq-prod refl refl = refl
|
|
58
|
|
59 xx=zy→x=y : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y
|
|
60 xx=zy→x=y {x} {y} eq with trio< (& x) (& y)
|
|
61 xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c with eq← eq {& y} (case2 refl)
|
|
62 xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a )
|
|
63 xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a )
|
|
64 xx=zy→x=y {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b
|
|
65 xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c with eq← eq {& y} (case2 refl)
|
|
66 xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c )
|
|
67 xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c )
|
|
68
|
|
69 prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' )
|
|
70 prod-eq {x} {x'} {y} {y'} eq = ⟪ lemmax , lemmay ⟫ where
|
|
71 lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y
|
|
72 lemma2 {x} {y} {z} eq = trans (sym (xx=zy→x=y lemma3 )) ( xx=zy→x=y eq ) where
|
|
73 lemma3 : ( x , x ) =h= ( y , z )
|
|
74 lemma3 = ==-trans eq exg-pair
|
|
75 lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y
|
|
76 lemma1 {x} {y} eq with eq← eq {& y} (case2 refl)
|
|
77 lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s)
|
|
78 lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s)
|
|
79 lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z
|
|
80 lemma4 {x} {y} {z} eq with eq← eq {& z} (case2 refl)
|
|
81 lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z
|
|
82 ... | refl with lemma2 (==-sym eq )
|
|
83 ... | refl = refl
|
|
84 lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z
|
|
85 lemmax : x ≡ x'
|
|
86 lemmax with eq→ eq {& (x , x)} (case1 refl)
|
|
87 lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x')
|
|
88 lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y'
|
|
89 ... | refl = lemma1 (ord→== s )
|
|
90 lemmay : y ≡ y'
|
|
91 lemmay with lemmax
|
|
92 ... | refl with lemma4 eq -- with (x,y)≡(x,y')
|
|
93 ... | eq1 = lemma4 (ord→== (cong (λ k → & k ) eq1 ))
|
|
94
|
1098
|
95 prod-≡ : { x x' y y' : HOD } → < x , y > ≡ < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' )
|
|
96 prod-≡ eq = prod-eq (ord→== (cong (&) eq ))
|
|
97
|
431
|
98 --
|
1098
|
99 -- unlike ordered pair, ZFPair is not a HOD
|
431
|
100
|
|
101 data ord-pair : (p : Ordinal) → Set n where
|
|
102 pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) )
|
|
103
|
1098
|
104 ZFPair : OD
|
|
105 ZFPair = record { def = λ x → ord-pair x }
|
431
|
106
|
|
107 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
|
|
108 -- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y'
|
|
109 -- eq-pair refl refl = HE.refl
|
|
110
|
|
111 pi1 : { p : Ordinal } → ord-pair p → Ordinal
|
|
112 pi1 ( pair x y) = x
|
|
113
|
1098
|
114 π1 : { p : HOD } → def ZFPair (& p) → HOD
|
431
|
115 π1 lt = * (pi1 lt )
|
|
116
|
|
117 pi2 : { p : Ordinal } → ord-pair p → Ordinal
|
|
118 pi2 ( pair x y ) = y
|
|
119
|
1098
|
120 π2 : { p : HOD } → def ZFPair (& p) → HOD
|
431
|
121 π2 lt = * (pi2 lt )
|
|
122
|
1098
|
123 op-cons : ( ox oy : Ordinal ) → def ZFPair (& ( < * ox , * oy > ))
|
|
124 op-cons ox oy = pair ox oy
|
431
|
125
|
|
126 def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x
|
|
127 def-subst df refl refl = df
|
|
128
|
1098
|
129 p-cons : ( x y : HOD ) → def ZFPair (& ( < x , y >))
|
|
130 p-cons x y = def-subst {_} {_} {ZFPair} {& (< x , y >)} (pair (& x) ( & y )) refl (
|
431
|
131 let open ≡-Reasoning in begin
|
|
132 & < * (& x) , * (& y) >
|
|
133 ≡⟨ cong₂ (λ j k → & < j , k >) *iso *iso ⟩
|
|
134 & < x , y >
|
|
135 ∎ )
|
|
136
|
|
137 op-iso : { op : Ordinal } → (q : ord-pair op ) → & < * (pi1 q) , * (pi2 q) > ≡ op
|
|
138 op-iso (pair ox oy) = refl
|
|
139
|
1098
|
140 p-iso : { x : HOD } → (p : def ZFPair (& x) ) → < π1 p , π2 p > ≡ x
|
431
|
141 p-iso {x} p = ord≡→≡ (op-iso p)
|
|
142
|
1098
|
143 p-pi1 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π1 p ≡ x
|
431
|
144 p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) ))
|
|
145
|
1098
|
146 p-pi2 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π2 p ≡ y
|
431
|
147 p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p)))
|
|
148
|
|
149 _⊗_ : (A B : HOD) → HOD
|
|
150 A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) ))
|
|
151
|
|
152 product→ : {A B a b : HOD} → A ∋ a → B ∋ b → ( A ⊗ B ) ∋ < a , b >
|
1096
|
153 product→ {A} {B} {a} {b} A∋a B∋b = record { owner = _ ; ao = lemma1 ; ox = subst (λ k → odef k _) (sym *iso) lemma2 } where
|
431
|
154 lemma1 : odef (Replace B (λ b₁ → Replace A (λ a₁ → < a₁ , b₁ >))) (& (Replace A (λ a₁ → < a₁ , b >)))
|
|
155 lemma1 = replacement← B b B∋b
|
|
156 lemma2 : odef (Replace A (λ a₁ → < a₁ , b >)) (& < a , b >)
|
|
157 lemma2 = replacement← A a A∋a
|
|
158
|
1098
|
159 data ZFProduct (A B : HOD) : (p : Ordinal) → Set n where
|
|
160 ab-pair : {a b : Ordinal } → odef A a → odef B b → ZFProduct A B ( & ( < * a , * b > ) )
|
|
161
|
431
|
162 ZFP : (A B : HOD) → HOD
|
1098
|
163 ZFP A B = record { od = record { def = λ x → ZFProduct A B x }
|
1169
|
164 ; odmax = odmax ( A ⊗ B ) ; <odmax = λ {y} px → <odmax ( A ⊗ B ) (lemma0 px) }
|
431
|
165 where
|
1169
|
166 lemma0 : {A B : HOD} {x : Ordinal} → ZFProduct A B x → odef (A ⊗ B) x
|
|
167 lemma0 {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by)
|
1098
|
168
|
|
169 ZFP→ : {A B a b : HOD} → A ∋ a → B ∋ b → ZFP A B ∋ < a , b >
|
|
170 ZFP→ {A} {B} {a} {b} aa bb = subst (λ k → ZFProduct A B k ) (cong₂ (λ j k → & < j , k >) *iso *iso ) ( ab-pair aa bb )
|
431
|
171
|
1104
|
172 zπ1 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal
|
|
173 zπ1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb) = a
|
|
174
|
|
175 zp1 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef A (zπ1 zx)
|
|
176 zp1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = aa
|
|
177
|
|
178 zπ2 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal
|
|
179 zπ2 (ab-pair {a} {b} aa bb) = b
|
|
180
|
|
181 zp2 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef B (zπ2 zx)
|
|
182 zp2 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = bb
|
|
183
|
|
184 zp-iso : { A B : HOD } → {x : Ordinal } → (p : odef (ZFP A B) x ) → & < * (zπ1 p) , * (zπ2 p) > ≡ x
|
|
185 zp-iso {A} {B} {_} (ab-pair {a} {b} aa bb) = refl
|
|
186
|
1216
|
187 zp-iso1 : { A B : HOD } → {a b : Ordinal } → (p : odef (ZFP A B) (& < * a , * b > )) → (* (zπ1 p) ≡ (* a)) ∧ (* (zπ2 p) ≡ (* b))
|
|
188 zp-iso1 {A} {B} {a} {b} pab = prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) zz11) ) where
|
|
189 zz11 : & < * (zπ1 pab) , * (zπ2 pab) > ≡ & < * a , * b >
|
|
190 zz11 = zp-iso pab
|
|
191
|
1223
|
192 zp-iso0 : { A B : HOD } → {a b : Ordinal } → (p : odef (ZFP A B) (& < * a , * b > )) → (zπ1 p ≡ a) ∧ (zπ2 p ≡ b)
|
|
193 zp-iso0 {A} {B} {a} {b} pab = ⟪ subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj1 (zp-iso1 pab) ))
|
|
194 , subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj2 (zp-iso1 pab) ) ) ⟫
|
|
195
|
431
|
196 ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x
|
1098
|
197 ZFP⊆⊗ {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by)
|
|
198
|
|
199 ⊗⊆ZFPair : {A B x : HOD} → ( A ⊗ B ) ∋ x → def ZFPair (& x)
|
|
200 ⊗⊆ZFPair {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = aa ; x=ψz = x=ψa } ; ox = ox } = zfp01 where
|
|
201 zfp02 : Replace A (λ z → < z , * a >) ≡ * owner
|
|
202 zfp02 = subst₂ ( λ j k → j ≡ k ) *iso refl (sym (cong (*) x=ψa ))
|
|
203 zfp01 : def ZFPair (& x)
|
|
204 zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox
|
|
205 ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → def ZFPair k) (cong (&) zfp00) (op-cons b a ) where
|
|
206 zfp00 : < * b , * a > ≡ x
|
|
207 zfp00 = sym ( subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψb) )
|
431
|
208
|
1098
|
209 ⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → odef (ZFP A B) (& x)
|
|
210 ⊗⊆ZFP {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = ba ; x=ψz = x=ψa } ; ox = ox } = zfp01 where
|
|
211 zfp02 : Replace A (λ z → < z , * a >) ≡ * owner
|
|
212 zfp02 = subst₂ ( λ j k → j ≡ k ) *iso refl (sym (cong (*) x=ψa ))
|
|
213 zfp01 : odef (ZFP A B) (& x)
|
|
214 zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox
|
|
215 ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → ZFProduct A B k ) (sym x=ψb) (ab-pair ab ba)
|
431
|
216
|
1105
|
217 ZFPproj1 : {A B X : HOD} → X ⊆ ZFP A B → HOD
|
|
218 ZFPproj1 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ1 (X⊆P px) ))
|
|
219
|
|
220 ZFPproj2 : {A B X : HOD} → X ⊆ ZFP A B → HOD
|
|
221 ZFPproj2 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ2 (X⊆P px) ))
|
1098
|
222
|
1218
|
223 ZFProj1-iso : {P Q : HOD} {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ1 p ≡ a
|
|
224 ZFProj1-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq))
|
|
225 ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) a=c)
|
1105
|
226
|
1218
|
227 ZFProj2-iso : {P Q : HOD} {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ2 p ≡ b
|
|
228 ZFProj2-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq))
|
|
229 ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d)
|
1105
|
230
|
1219
|
231 ZFP∩ : {A B C : HOD} → ( ZFP (A ∩ B) C ≡ ZFP A C ∩ ZFP B C ) ∧ ( ZFP C (A ∩ B) ≡ ZFP C A ∩ ZFP C B )
|
|
232 proj1 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = zfp00 ; eq← = zfp01 } where
|
|
233 zfp00 : {x : Ordinal} → ZFProduct (A ∩ B) C x → odef (ZFP A C ∩ ZFP B C) x
|
|
234 zfp00 (ab-pair ⟪ pa , pb ⟫ qx) = ⟪ ab-pair pa qx , ab-pair pb qx ⟫
|
|
235 zfp01 : {x : Ordinal} → odef (ZFP A C ∩ ZFP B C) x → ZFProduct (A ∩ B) C x
|
1220
|
236 zfp01 {x} ⟪ p , q ⟫ = subst (λ k → ZFProduct (A ∩ B) C k) zfp07 ( ab-pair (zfp02 ⟪ p , q ⟫ ) (zfp04 q) ) where
|
|
237 zfp05 : & < * (zπ1 p) , * (zπ2 p) > ≡ x
|
|
238 zfp05 = zp-iso p
|
|
239 zfp06 : & < * (zπ1 q) , * (zπ2 q) > ≡ x
|
|
240 zfp06 = zp-iso q
|
|
241 zfp07 : & < * (zπ1 p) , * (zπ2 q) > ≡ x
|
|
242 zfp07 = trans (cong (λ k → & < k , * (zπ2 q) > )
|
|
243 (proj1 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) (trans zfp05 (sym (zfp06)))))))) zfp06
|
1219
|
244 zfp02 : {x : Ordinal } → (acx : odef (ZFP A C ∩ ZFP B C) x) → odef (A ∩ B) (zπ1 (proj1 acx))
|
1220
|
245 zfp02 {.(& < * _ , * _ >)} ⟪ ab-pair {a} {b} ax bx , bcx ⟫ = ⟪ ax , zfp03 bcx refl ⟫ where
|
1219
|
246 zfp03 : {x : Ordinal } → (bc : odef (ZFP B C) x) → x ≡ (& < * a , * b >) → odef B (zπ1 (ab-pair {A} {C} ax bx))
|
1220
|
247 zfp03 (ab-pair {a1} {b1} x x₁) eq = subst (λ k → odef B k ) zfp08 x where
|
|
248 zfp08 : a1 ≡ a
|
|
249 zfp08 = subst₂ _≡_ &iso &iso (cong (&) (proj1 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) eq)))))
|
1219
|
250 zfp04 : {x : Ordinal } (acx : odef (ZFP B C) x )→ odef C (zπ2 acx)
|
1220
|
251 zfp04 (ab-pair x x₁) = x₁
|
|
252 proj2 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = zfp00 ; eq← = zfp01 } where
|
|
253 zfp00 : {x : Ordinal} → ZFProduct C (A ∩ B) x → odef (ZFP C A ∩ ZFP C B) x
|
|
254 zfp00 (ab-pair qx ⟪ pa , pb ⟫ ) = ⟪ ab-pair qx pa , ab-pair qx pb ⟫
|
|
255 zfp01 : {x : Ordinal} → odef (ZFP C A ∩ ZFP C B ) x → ZFProduct C (A ∩ B) x
|
|
256 zfp01 {x} ⟪ p , q ⟫ = subst (λ k → ZFProduct C (A ∩ B) k) zfp07 ( ab-pair (zfp04 p) (zfp02 ⟪ p , q ⟫ ) ) where
|
|
257 zfp05 : & < * (zπ1 p) , * (zπ2 p) > ≡ x
|
|
258 zfp05 = zp-iso p
|
|
259 zfp06 : & < * (zπ1 q) , * (zπ2 q) > ≡ x
|
|
260 zfp06 = zp-iso q
|
|
261 zfp07 : & < * (zπ1 p) , * (zπ2 q) > ≡ x
|
|
262 zfp07 = trans (cong (λ k → & < * (zπ1 p) , k > )
|
|
263 (sym (proj2 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) (trans zfp05 (sym (zfp06))))))))) zfp05
|
|
264 zfp02 : {x : Ordinal } → (acx : odef (ZFP C A ∩ ZFP C B ) x) → odef (A ∩ B) (zπ2 (proj2 acx))
|
|
265 zfp02 {.(& < * _ , * _ >)} ⟪ bcx , ab-pair {b} {a} ax bx ⟫ = ⟪ zfp03 bcx refl , bx ⟫ where
|
|
266 zfp03 : {x : Ordinal } → (bc : odef (ZFP C A ) x) → x ≡ (& < * b , * a >) → odef A (zπ2 (ab-pair {C} {B} ax bx ))
|
|
267 zfp03 (ab-pair {b1} {a1} x x₁) eq = subst (λ k → odef A k ) zfp08 x₁ where
|
|
268 zfp08 : a1 ≡ a
|
|
269 zfp08 = subst₂ _≡_ &iso &iso (cong (&) (proj2 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) eq)))))
|
|
270 zfp04 : {x : Ordinal } (acx : odef (ZFP C A ) x )→ odef C (zπ1 acx)
|
|
271 zfp04 (ab-pair x x₁) = x
|
1219
|
272
|
1224
|
273 open import BAlgebra O
|
|
274
|
|
275 ZFP\Q : {P Q p : HOD} → (( ZFP P Q \ ZFP p Q ) ≡ ZFP (P \ p) Q ) ∧ (( ZFP P Q \ ZFP P p ) ≡ ZFP P (Q \ p) )
|
|
276 ZFP\Q {P} {Q} {p} = ⟪ ==→o≡ record { eq→ = ty70 ; eq← = ty71 } , ==→o≡ record { eq→ = ty73 ; eq← = ty75 } ⟫ where
|
|
277 ty70 : {x : Ordinal } → odef ( ZFP P Q \ ZFP p Q ) x → odef (ZFP (P \ p) Q) x
|
|
278 ty70 ⟪ ab-pair {a} {b} Pa pb , npq ⟫ = ab-pair ty72 pb where
|
|
279 ty72 : odef (P \ p ) a
|
|
280 ty72 = ⟪ Pa , (λ pa → npq (ab-pair pa pb ) ) ⟫
|
|
281 ty71 : {x : Ordinal } → odef (ZFP (P \ p) Q) x → odef ( ZFP P Q \ ZFP p Q ) x
|
|
282 ty71 (ab-pair {a} {b} ⟪ Pa , npa ⟫ Qb) = ⟪ ab-pair Pa Qb
|
|
283 , (λ pab → npa (subst (λ k → odef p k) (proj1 (zp-iso0 pab)) (zp1 pab)) ) ⟫
|
|
284 ty73 : {x : Ordinal } → odef ( ZFP P Q \ ZFP P p ) x → odef (ZFP P (Q \ p) ) x
|
|
285 ty73 ⟪ ab-pair {a} {b} pa Qb , npq ⟫ = ab-pair pa ty72 where
|
|
286 ty72 : odef (Q \ p ) b
|
|
287 ty72 = ⟪ Qb , (λ qb → npq (ab-pair pa qb ) ) ⟫
|
|
288 ty75 : {x : Ordinal } → odef (ZFP P (Q \ p) ) x → odef ( ZFP P Q \ ZFP P p ) x
|
|
289 ty75 (ab-pair {a} {b} Pa ⟪ Qb , nqb ⟫ ) = ⟪ ab-pair Pa Qb
|
|
290 , (λ pab → nqb (subst (λ k → odef p k) (proj2 (zp-iso0 pab)) (zp2 pab)) ) ⟫
|
1219
|
291
|
|
292
|
|
293
|
|
294
|
|
295
|