Sun, 16 Jun 2019 02:06:09 +0900 |
Shinji KONO |
...
|
Wed, 12 Jun 2019 10:45:00 +0900 |
Shinji KONO |
starting over HOD
|
Mon, 10 Jun 2019 09:53:45 +0900 |
Shinji KONO |
ZF Set Theory in Agda
release
|
Mon, 10 Jun 2019 09:50:52 +0900 |
Shinji KONO |
Added tag current for changeset a402881cc341
|
Mon, 10 Jun 2019 09:50:44 +0900 |
Shinji KONO |
add comment
|
Mon, 10 Jun 2019 09:35:14 +0900 |
Shinji KONO |
Power Set done with min-sup assumption
|
Mon, 10 Jun 2019 00:29:20 +0900 |
Shinji KONO |
...
|
Sun, 09 Jun 2019 19:41:53 +0900 |
Shinji KONO |
power set using sup on Def
|
Sat, 08 Jun 2019 22:17:40 +0900 |
Shinji KONO |
Power Set and L
|
Sat, 08 Jun 2019 17:33:09 +0900 |
Shinji KONO |
clean up
|
Sat, 08 Jun 2019 13:18:10 +0900 |
Shinji KONO |
...
|
Thu, 06 Jun 2019 09:36:41 +0900 |
Shinji KONO |
replacement
|
Wed, 05 Jun 2019 18:24:40 +0900 |
Shinji KONO |
Added tag current for changeset b4742cf4ef97
|
Wed, 05 Jun 2019 18:24:32 +0900 |
Shinji KONO |
infinity axiom done
|
Wed, 05 Jun 2019 14:35:32 +0900 |
Shinji KONO |
def ord conversion
|
Wed, 05 Jun 2019 09:47:19 +0900 |
Shinji KONO |
...
|
Wed, 05 Jun 2019 09:10:33 +0900 |
Shinji KONO |
osuc work around done
|
Wed, 05 Jun 2019 07:05:48 +0900 |
Shinji KONO |
split omax?
|
Wed, 05 Jun 2019 03:21:47 +0900 |
Shinji KONO |
internal error
|
Wed, 05 Jun 2019 02:58:17 +0900 |
Shinji KONO |
omax-induction does not work
|
Tue, 04 Jun 2019 23:58:58 +0900 |
Shinji KONO |
omax ..
|
Tue, 04 Jun 2019 12:28:43 +0900 |
Shinji KONO |
...
|
Tue, 04 Jun 2019 09:22:45 +0900 |
Shinji KONO |
Union (x , y) == (x , y ) only true on infinite case
|
Tue, 04 Jun 2019 01:05:33 +0900 |
Shinji KONO |
simpler ordinal
|
Mon, 03 Jun 2019 12:29:33 +0900 |
Shinji KONO |
remove ∅-base-def
|
Mon, 03 Jun 2019 10:50:03 +0900 |
Shinji KONO |
add some lemma
|
Mon, 03 Jun 2019 10:19:52 +0900 |
Shinji KONO |
infinite and replacement begin
|
Sun, 02 Jun 2019 15:12:26 +0900 |
Shinji KONO |
Power Set on going ...
|
Sun, 02 Jun 2019 11:56:43 +0900 |
Shinji KONO |
extensionality done
|
Sun, 02 Jun 2019 10:53:52 +0900 |
Shinji KONO |
Union done
|
Sat, 01 Jun 2019 19:19:40 +0900 |
Shinji KONO |
ordinal atomical successor?
|
Sat, 01 Jun 2019 18:17:24 +0900 |
Shinji KONO |
fix ordinal
|
Sat, 01 Jun 2019 14:43:05 +0900 |
Shinji KONO |
...
|
Sat, 01 Jun 2019 10:23:53 +0900 |
Shinji KONO |
add osuc ( next larger element of Ordinal )
|
Sat, 01 Jun 2019 10:01:38 +0900 |
Shinji KONO |
Union needs +1 space
|
Fri, 31 May 2019 22:30:23 +0900 |
Shinji KONO |
union continue
|
Thu, 30 May 2019 02:31:58 +0900 |
Shinji KONO |
Union
|
Thu, 30 May 2019 01:56:12 +0900 |
Shinji KONO |
Added tag current for changeset 92a11dc6425c
|
Thu, 30 May 2019 01:55:59 +0900 |
Shinji KONO |
regularity done
|
Thu, 30 May 2019 01:02:47 +0900 |
Shinji KONO |
¬∅=→∅∈ : {n : Level} → { x : OD {suc n} } → ¬ ( x == od∅ {suc n} ) → x ∋ od∅ {suc n}
|
Wed, 29 May 2019 18:50:57 +0900 |
Shinji KONO |
equal
|
Wed, 29 May 2019 14:28:26 +0900 |
Shinji KONO |
omin
|
Wed, 29 May 2019 13:41:12 +0900 |
Shinji KONO |
...
|
Wed, 29 May 2019 13:02:03 +0900 |
Shinji KONO |
fix
|
Wed, 29 May 2019 12:06:43 +0900 |
Shinji KONO |
dead end
|
Wed, 29 May 2019 05:46:05 +0900 |
Shinji KONO |
lemma = cong₂ (λ x not → minimul x not ) oiso { }6
|
Tue, 28 May 2019 23:02:50 +0900 |
Shinji KONO |
...
|
Tue, 28 May 2019 11:31:43 +0900 |
Shinji KONO |
...
|
Tue, 28 May 2019 00:07:23 +0900 |
Shinji KONO |
almost ...
|
Mon, 27 May 2019 23:45:56 +0900 |
Shinji KONO |
regurality elimination case
|
Mon, 27 May 2019 21:58:17 +0900 |
Shinji KONO |
fix selection axiom
|
Mon, 27 May 2019 16:14:35 +0900 |
Shinji KONO |
...
|
Mon, 27 May 2019 15:36:03 +0900 |
Shinji KONO |
tri-c<
|
Mon, 27 May 2019 15:00:45 +0900 |
Shinji KONO |
...
|
Sat, 25 May 2019 21:31:07 +0900 |
Shinji KONO |
...
|
Sat, 25 May 2019 20:48:20 +0900 |
Shinji KONO |
fix Select
|
Sat, 25 May 2019 18:45:47 +0900 |
Shinji KONO |
Added tag current for changeset 264784731a67
|
Sat, 25 May 2019 18:45:35 +0900 |
Shinji KONO |
clean up
|
Sat, 25 May 2019 09:09:40 +0900 |
Shinji KONO |
== and ∅7
|
Sat, 25 May 2019 04:58:38 +0900 |
Shinji KONO |
od∅' {n} = ord→od (o∅ {n})
|