annotate automaton-in-agda/src/gcd.agda @ 246:6cd80d8432ea

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 28 Jun 2021 19:28:52 +0900
parents 186b66d56ab5
children 61d9fdb22f2d
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
1 {-# OPTIONS --allow-unsolved-metas #-}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
2 module gcd where
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
4 open import Data.Nat
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
5 open import Data.Nat.Properties
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Data.Empty
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
7 open import Data.Unit using (⊤ ; tt)
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Relation.Nullary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Relation.Binary.PropositionalEquality
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
10 open import Relation.Binary.Definitions
149
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
11 open import nat
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
12 open import logic
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
14 record Factor (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
15 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
16 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
17 remain : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
18 is-factor : factor * n + remain ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
19
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
20 record Dividable (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
21 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
22 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
23 is-factor : factor * n + 0 ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
24
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
25 open Factor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
26
193
875eb1fa9694 dividable reorganzaiton
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
27 DtoF : {n m : ℕ} → Dividable n m → Factor n m
195
373b6e0ec595 ... remove f>1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
28 DtoF {n} {m} record { factor = f ; is-factor = fa } = record { factor = f ; remain = 0 ; is-factor = fa }
193
875eb1fa9694 dividable reorganzaiton
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
29
195
373b6e0ec595 ... remove f>1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
30 FtoD : {n m : ℕ} → (fc : Factor n m) → remain fc ≡ 0 → Dividable n m
373b6e0ec595 ... remove f>1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
31 FtoD {n} {m} record { factor = f ; remain = r ; is-factor = fa } refl = record { factor = f ; is-factor = fa }
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
32
199
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
33 --divdable^2 : ( n k : ℕ ) → Dividable k ( n * n ) → Dividable k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
34 --divdable^2 n k dn2 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
35
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
36 decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n
191
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
37 decf {n} {k} record { factor = f ; remain = r ; is-factor = fa } =
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
38 decf1 {n} {k} f r fa where
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
39 decf1 : { n k : ℕ } → (f r : ℕ) → (f * k + r ≡ suc n) → Factor k n
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
40 decf1 {n} {k} f (suc r) fa = -- this case must be the first
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
41 record { factor = f ; remain = r ; is-factor = ( begin -- fa : f * k + suc r ≡ suc n
189
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
42 f * k + r ≡⟨ cong pred ( begin
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
43 suc ( f * k + r ) ≡⟨ +-comm _ r ⟩
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
44 r + suc (f * k) ≡⟨ sym (+-assoc r 1 _) ⟩
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
45 (r + 1) + f * k ≡⟨ cong (λ t → t + f * k ) (+-comm r 1) ⟩
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
46 (suc r ) + f * k ≡⟨ +-comm (suc r) _ ⟩
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
47 f * k + suc r ≡⟨ fa ⟩
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
48 suc n ∎ ) ⟩
191
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
49 n ∎ ) } where open ≡-Reasoning
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
50 decf1 {n} {zero} (suc f) zero fa = ⊥-elim ( nat-≡< fa (
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
51 begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero) ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
52 suc (f * 0) ≡⟨ cong suc (*-comm f zero) ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
53 suc zero ≤⟨ s≤s z≤n ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
54 suc n ∎ )) where open ≤-Reasoning
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
55 decf1 {n} {suc k} (suc f) zero fa =
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
56 record { factor = f ; remain = k ; is-factor = ( begin -- fa : suc (k + f * suc k + zero) ≡ suc n
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
57 f * suc k + k ≡⟨ +-comm _ k ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
58 k + f * suc k ≡⟨ +-comm zero _ ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
59 (k + f * suc k) + zero ≡⟨ cong pred fa ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
60 n ∎ ) } where open ≡-Reasoning
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
61
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
62 div0 : {k : ℕ} → Dividable k 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
63 div0 {k} = record { factor = 0; is-factor = refl }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
64
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
65 div= : {k : ℕ} → Dividable k k
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
66 div= {k} = record { factor = 1; is-factor = ( begin
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
67 k + 0 * k + 0 ≡⟨ trans ( +-comm _ 0) ( +-comm _ 0) ⟩
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
68 k ∎ ) } where open ≡-Reasoning
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
69
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
70 gcd1 : ( i i0 j j0 : ℕ ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
71 gcd1 zero i0 zero j0 with <-cmp i0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
72 ... | tri< a ¬b ¬c = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
73 ... | tri≈ ¬a refl ¬c = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
74 ... | tri> ¬a ¬b c = j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
75 gcd1 zero i0 (suc zero) j0 = 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
76 gcd1 zero zero (suc (suc j)) j0 = j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
77 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
78 gcd1 (suc zero) i0 zero j0 = 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
79 gcd1 (suc (suc i)) i0 zero zero = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
80 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
81 gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
82
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
83 gcd : ( i j : ℕ ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
84 gcd i j = gcd1 i i j j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
85
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
86 gcd20 : (i : ℕ) → gcd i 0 ≡ i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
87 gcd20 zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
88 gcd20 (suc i) = gcd201 (suc i) where
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
89 gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
90 gcd201 zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
91 gcd201 (suc zero) = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
92 gcd201 (suc (suc i)) = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
93
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
94 gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
95 gcd22 zero i0 zero o0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
96 gcd22 zero i0 (suc o) o0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
97 gcd22 (suc i) i0 zero o0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
98 gcd22 (suc i) i0 (suc o) o0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
99
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
100 gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
101 gcdmm zero m with <-cmp m m
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
102 ... | tri< a ¬b ¬c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
103 ... | tri≈ ¬a refl ¬c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
104 ... | tri> ¬a ¬b c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
105 gcdmm (suc n) m = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m )
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
106
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
107 gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
108 gcdsym2 i j with <-cmp i j | <-cmp j i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
109 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
110 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
111 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
112 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
113 ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
114 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
115 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
116 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
117 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
118 gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
119 gcdsym1 zero zero zero zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
120 gcdsym1 zero zero zero (suc j0) = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
121 gcdsym1 zero (suc i0) zero zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
122 gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
123 gcdsym1 zero zero (suc zero) j0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
124 gcdsym1 zero zero (suc (suc j)) j0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
125 gcdsym1 zero (suc i0) (suc zero) j0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
126 gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j))
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
127 gcdsym1 (suc zero) i0 zero j0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
128 gcdsym1 (suc (suc i)) i0 zero zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
129 gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
130 gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 )
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
131
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
132 gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
133 gcdsym {n} {m} = gcdsym1 n n m m
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
134
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
135 gcd11 : ( i : ℕ ) → gcd i i ≡ i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
136 gcd11 i = gcdmm i i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
137
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
138
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
139 gcd203 : (i : ℕ) → gcd1 (suc i) (suc i) i i ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
140 gcd203 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
141 gcd203 (suc i) = gcd205 (suc i) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
142 gcd205 : (j : ℕ) → gcd1 (suc j) (suc (suc i)) j (suc i) ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
143 gcd205 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
144 gcd205 (suc j) = subst (λ k → k ≡ 1) (gcd22 (suc j) (suc (suc i)) j (suc i)) (gcd205 j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
145
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
146 gcd204 : (i : ℕ) → gcd1 1 1 i i ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
147 gcd204 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
148 gcd204 (suc zero) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
149 gcd204 (suc (suc zero)) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
150 gcd204 (suc (suc (suc i))) = gcd204 (suc (suc i))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
152 gcd+j : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
153 gcd+j i j = gcd200 i i j j refl refl where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
154 gcd202 : (i j1 : ℕ) → (i + suc j1) ≡ suc (i + j1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
155 gcd202 zero j1 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
156 gcd202 (suc i) j1 = cong suc (gcd202 i j1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
157 gcd201 : (i i0 j j0 j1 : ℕ) → gcd1 (i + j1) (i0 + suc j) j1 j0 ≡ gcd1 i (i0 + suc j) zero j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
158 gcd201 i i0 j j0 zero = subst (λ k → gcd1 k (i0 + suc j) zero j0 ≡ gcd1 i (i0 + suc j) zero j0 ) (+-comm zero i) refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
159 gcd201 i i0 j j0 (suc j1) = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
160 gcd1 (i + suc j1) (i0 + suc j) (suc j1) j0 ≡⟨ cong (λ k → gcd1 k (i0 + suc j) (suc j1) j0 ) (gcd202 i j1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
161 gcd1 (suc (i + j1)) (i0 + suc j) (suc j1) j0 ≡⟨ gcd22 (i + j1) (i0 + suc j) j1 j0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
162 gcd1 (i + j1) (i0 + suc j) j1 j0 ≡⟨ gcd201 i i0 j j0 j1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
163 gcd1 i (i0 + suc j) zero j0 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
164 gcd200 : (i i0 j j0 : ℕ) → i ≡ i0 → j ≡ j0 → gcd1 (i + j) (i0 + j) j j0 ≡ gcd1 i i j0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
165 gcd200 i .i zero .0 refl refl = subst (λ k → gcd1 k k zero zero ≡ gcd1 i i zero zero ) (+-comm zero i) refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
166 gcd200 (suc (suc i)) i0 (suc j) (suc j0) i=i0 j=j0 = gcd201 (suc (suc i)) i0 j (suc j0) (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
167 gcd200 zero zero (suc zero) .1 i=i0 refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
168 gcd200 zero zero (suc (suc j)) .(suc (suc j)) i=i0 refl = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
169 gcd1 (zero + suc (suc j)) (zero + suc (suc j)) (suc (suc j)) (suc (suc j)) ≡⟨ gcdmm (suc (suc j)) (suc (suc j)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
170 suc (suc j) ≡⟨ sym (gcd20 (suc (suc j))) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
171 gcd1 zero zero (suc (suc j)) (suc (suc j)) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
172 gcd200 zero (suc i0) (suc j) .(suc j) () refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
173 gcd200 (suc zero) .1 (suc j) .(suc j) refl refl = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
174 gcd1 (1 + suc j) (1 + suc j) (suc j) (suc j) ≡⟨ gcd203 (suc j) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
175 1 ≡⟨ sym ( gcd204 (suc j)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
176 gcd1 1 1 (suc j) (suc j) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
177 gcd200 (suc (suc i)) i0 (suc j) zero i=i0 ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
178
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
179 div1 : { k : ℕ } → k > 1 → ¬ Dividable k 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
180 div1 {k} k>1 record { factor = (suc f) ; is-factor = fa } = ⊥-elim ( nat-≡< (sym fa) ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
181 2 ≤⟨ k>1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
182 k ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
183 k + 0 ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
184 1 * k ≤⟨ *-mono-≤ {1} {suc f} (s≤s z≤n ) ≤-refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
185 suc f * k ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
186 suc f * k + 0 ∎ )) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
187
213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
188 div+div : { i j k : ℕ } → Dividable k i → Dividable k j → Dividable k (i + j) ∧ Dividable k (j + i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
189 div+div {i} {j} {k} di dj = ⟪ div+div1 , subst (λ g → Dividable k g) (+-comm i j) div+div1 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
190 fki = Dividable.factor di
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
191 fkj = Dividable.factor dj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
192 div+div1 : Dividable k (i + j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
193 div+div1 = record { factor = fki + fkj ; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
194 (fki + fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
195 (fki + fkj) * k ≡⟨ *-distribʳ-+ k fki _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
196 fki * k + fkj * k ≡⟨ cong₂ ( λ i j → i + j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
197 (fki * k + 0) + (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i + j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
198 i + j ∎ ) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
199 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
200
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
201 div-div : { i j k : ℕ } → k > 1 → Dividable k i → Dividable k j → Dividable k (i - j) ∧ Dividable k (j - i)
213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
202 div-div {i} {j} {k} k>1 di dj = ⟪ div-div1 di dj , div-div1 dj di ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
203 div-div1 : {i j : ℕ } → Dividable k i → Dividable k j → Dividable k (i - j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
204 div-div1 {i} {j} di dj = record { factor = fki - fkj ; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
205 (fki - fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
206 (fki - fkj) * k ≡⟨ distr-minus-* {fki} {fkj} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
207 (fki * k) - (fkj * k) ≡⟨ cong₂ ( λ i j → i - j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
208 (fki * k + 0) - (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i - j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
209 i - j ∎ ) } where
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
210 open ≡-Reasoning
213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
211 fki = Dividable.factor di
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
212 fkj = Dividable.factor dj
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
213
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
214 open _∧_
192
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
215
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
216 div+1 : { i k : ℕ } → k > 1 → Dividable k i → ¬ Dividable k (suc i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
217 div+1 {i} {k} k>1 d d1 = div1 k>1 div+11 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
218 div+11 : Dividable k 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
219 div+11 = subst (λ g → Dividable k g) (minus+y-y {1} {i} ) ( proj2 (div-div k>1 d d1 ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
221 div<k : { m k : ℕ } → k > 1 → m > 0 → m < k → ¬ Dividable k m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
222 div<k {m} {k} k>1 m>0 m<k d = ⊥-elim ( nat-≤> (div<k1 (Dividable.factor d) (Dividable.is-factor d)) m<k ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
223 div<k1 : (f : ℕ ) → f * k + 0 ≡ m → k ≤ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
224 div<k1 zero eq = ⊥-elim (nat-≡< eq m>0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
225 div<k1 (suc f) eq = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
226 k ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
227 k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
228 k + f * k + 0 ≡⟨ eq ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
229 m ∎ where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
230
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
231 div→k≤m : { m k : ℕ } → k > 1 → m > 0 → Dividable k m → m ≥ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
232 div→k≤m {m} {k} k>1 m>0 d with <-cmp m k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
233 ... | tri< a ¬b ¬c = ⊥-elim ( div<k k>1 m>0 a d )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
234 ... | tri≈ ¬a refl ¬c = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
235 ... | tri> ¬a ¬b c = <to≤ c
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
236
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
237 div1*k+0=k : {k : ℕ } → 1 * k + 0 ≡ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
238 div1*k+0=k {k} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
239 1 * k + 0 ≡⟨ cong (λ g → g + 0) (+-comm _ 0) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
240 k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
241 k ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
242
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
243 decD : {k m : ℕ} → k > 1 → Dec (Dividable k m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
244 decD {k} {m} k>1 = n-induction {_} {_} {ℕ} {λ m → Dec (Dividable k m ) } F I m where
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
245 F : ℕ → ℕ
216
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 215
diff changeset
246 F m = m
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
247 F0 : ( m : ℕ ) → F (m - k) ≡ 0 → Dec (Dividable k m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
248 F0 0 eq = yes record { factor = 0 ; is-factor = refl }
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
249 F0 (suc m) eq with <-cmp k (suc m)
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
250 ... | tri< a ¬b ¬c = yes record { factor = 1 ; is-factor =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
251 subst (λ g → 1 * k + 0 ≡ g ) (sym (i-j=0→i=j (<to≤ a) eq )) div1*k+0=k } where -- (suc m - k) ≡ 0 → k ≡ suc m, k ≤ suc m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
252 ... | tri≈ ¬a refl ¬c = yes record { factor = 1 ; is-factor = div1*k+0=k }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
253 ... | tri> ¬a ¬b c = no ( λ d → ⊥-elim (div<k k>1 (s≤s z≤n ) c d) )
216
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 215
diff changeset
254 decl : {m : ℕ } → 0 < m → m - k < m
217
119ab3f823f1 NInduction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 216
diff changeset
255 decl {m} 0<m = y-x<y (<-trans a<sa k>1 ) 0<m
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
256 ind : (p : ℕ ) → Dec (Dividable k (p - k) ) → Dec (Dividable k p )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
257 ind p (yes y) with <-cmp p k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
258 ... | tri≈ ¬a refl ¬c = yes (subst (λ g → Dividable k g) (minus+n ≤-refl ) (proj1 ( div+div y div= )))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
259 ... | tri> ¬a ¬b k<p = yes (subst (λ g → Dividable k g) (minus+n (<-trans k<p a<sa)) (proj1 ( div+div y div= )))
221
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
260 ... | tri< a ¬b ¬c with <-cmp p 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
261 ... | tri≈ ¬a refl ¬c₁ = yes div0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
262 ... | tri> ¬a ¬b₁ c = no (λ d → not-div p (Dividable.factor d) a c (Dividable.is-factor d) ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
263 not-div : (p f : ℕ) → p < k → 0 < p → f * k + 0 ≡ p → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
264 not-div (suc p) (suc f) p<k 0<p eq = nat-≡< (sym eq) ( begin -- ≤-trans p<k {!!}) -- suc p ≤ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
265 suc (suc p) ≤⟨ p<k ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
266 k ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
267 k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
268 suc f * k + 0 ∎ ) where open ≤-Reasoning
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
269 ind p (no n) = no (λ d → n (proj1 (div-div k>1 d div=)) )
216
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 215
diff changeset
270 I : Ninduction ℕ _ F
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
271 I = record {
216
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 215
diff changeset
272 pnext = λ p → p - k
217
119ab3f823f1 NInduction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 216
diff changeset
273 ; fzero = λ {m} eq → F0 m eq
219
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
274 ; decline = λ {m} lt → decl lt
217
119ab3f823f1 NInduction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 216
diff changeset
275 ; ind = λ {p} prev → ind p prev
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
276 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
277
193
875eb1fa9694 dividable reorganzaiton
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
278 gcd-gt : ( i i0 j j0 k : ℕ ) → k > 1 → (if : Factor k i) (i0f : Dividable k i0 ) (jf : Factor k j ) (j0f : Dividable k j0)
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
279 → Dividable k (i - j) ∧ Dividable k (j - i)
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
280 → Dividable k ( gcd1 i i0 j j0 )
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
281 gcd-gt zero i0 zero j0 k k>1 if i0f jf j0f i-j with <-cmp i0 j0
194
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
282 ... | tri< a ¬b ¬c = i0f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
283 ... | tri≈ ¬a refl ¬c = i0f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
284 ... | tri> ¬a ¬b c = j0f
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
285 gcd-gt zero i0 (suc zero) j0 k k>1 if i0f jf j0f i-j = ⊥-elim (div1 k>1 (proj2 i-j)) -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
286 gcd-gt zero zero (suc (suc j)) j0 k k>1 if i0f jf j0f i-j = j0f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
287 gcd-gt zero (suc i0) (suc (suc j)) j0 k k>1 if i0f jf j0f i-j =
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
288 gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k k>1 (decf (DtoF i0f)) i0f (decf jf) (proj2 i-j) (div-div k>1 i0f (proj2 i-j))
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
289 gcd-gt (suc zero) i0 zero j0 k k>1 if i0f jf j0f i-j = ⊥-elim (div1 k>1 (proj1 i-j)) -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
290 gcd-gt (suc (suc i)) i0 zero zero k k>1 if i0f jf j0f i-j = i0f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
291 gcd-gt (suc (suc i)) i0 zero (suc j0) k k>1 if i0f jf j0f i-j = --
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
292 gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k k>1 (decf if) (proj1 i-j) (decf (DtoF j0f)) j0f (div-div k>1 (proj1 i-j) j0f )
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
293 gcd-gt (suc zero) i0 (suc j) j0 k k>1 if i0f jf j0f i-j =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
294 gcd-gt zero i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
295 gcd-gt (suc (suc i)) i0 (suc j) j0 k k>1 if i0f jf j0f i-j =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
296 gcd-gt (suc i) i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
297
194
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
298 gcd-div : ( i j k : ℕ ) → k > 1 → (if : Dividable k i) (jf : Dividable k j )
186
08f4ec41ea93 even→gcd
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
299 → Dividable k ( gcd i j )
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
300 gcd-div i j k k>1 if jf = gcd-gt i i j j k k>1 (DtoF if) if (DtoF jf) jf (div-div k>1 if jf)
143
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
301
235
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
302 di-next : {i i0 j j0 : ℕ} → Dividable i0 ((j0 + suc i) - suc j ) ∧ Dividable j0 ((i0 + suc j) - suc i) →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
303 Dividable i0 ((j0 + i) - j ) ∧ Dividable j0 ((i0 + j) - i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
304 di-next {i} {i0} {j} {j0} x =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
305 ⟪ ( subst (λ k → Dividable i0 (k - suc j)) ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
306 j0 + suc i ≡⟨ sym (+-assoc j0 1 i ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
307 (j0 + 1) + i ≡⟨ cong (λ k → k + i) (+-comm j0 _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
308 suc (j0 + i) ∎ ) (proj1 x) ) ,
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
309 ( subst (λ k → Dividable j0 (k - suc i)) ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
310 i0 + suc j ≡⟨ sym (+-assoc i0 1 j ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
311 (i0 + 1) + j ≡⟨ cong (λ k → k + j) (+-comm i0 _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
312 suc (i0 + j) ∎ ) (proj2 x) ) ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
313 where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
315 di-next1 : {i0 j j0 : ℕ} → Dividable (suc i0) ((j0 + 0) - (suc (suc j))) ∧ Dividable j0 (suc (i0 + suc (suc j)))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
316 → Dividable (suc i0) ((suc (suc j) + i0) - suc j) ∧ Dividable (suc (suc j)) ((suc i0 + suc j) - i0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
317 di-next1 {i0} {j} {j0} x =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
318 ⟪ record { factor = 1 ; is-factor = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
319 1 * suc i0 + 0 ≡⟨ cong suc ( trans (+-comm _ 0) (+-comm _ 0) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
320 suc i0 ≡⟨ sym (minus+y-y {suc i0} {j}) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
321 (suc i0 + j) - j ≡⟨ cong (λ k → k - j ) (+-comm (suc i0) _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
322 (suc j + suc i0 ) - suc j ≡⟨ cong (λ k → k - suc j) (sym (+-assoc (suc j) 1 i0 )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
323 ((suc j + 1) + i0) - suc j ≡⟨ cong (λ k → (k + i0) - suc j) (+-comm _ 1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
324 (suc (suc j) + i0) - suc j ∎ } ,
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
325 subst (λ k → Dividable (suc (suc j)) k) ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
326 suc (suc j) ≡⟨ sym ( minus+y-y {suc (suc j)}{i0} ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
327 (suc (suc j) + i0 ) - i0 ≡⟨ cong (λ k → (k + i0) - i0) (cong suc (+-comm 1 _ )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
328 ((suc j + 1) + i0 ) - i0 ≡⟨ cong (λ k → k - i0) (+-assoc (suc j) 1 _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
329 (suc j + suc i0 ) - i0 ≡⟨ cong (λ k → k - i0) (+-comm (suc j) _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
330 ((suc i0 + suc j) - i0) ∎ ) div= ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
331 where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
332
245
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
333 gcd>0 : ( i j : ℕ ) → 0 < i → 0 < j → 0 < gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
334 gcd>0 i j 0<i 0<j = gcd>01 i i j j 0<i 0<j where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
335 gcd>01 : ( i i0 j j0 : ℕ ) → 0 < i0 → 0 < j0 → gcd1 i i0 j j0 > 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
336 gcd>01 zero i0 zero j0 0<i 0<j with <-cmp i0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
337 ... | tri< a ¬b ¬c = 0<i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
338 ... | tri≈ ¬a refl ¬c = 0<i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
339 ... | tri> ¬a ¬b c = 0<j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
340 gcd>01 zero i0 (suc zero) j0 0<i 0<j = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
341 gcd>01 zero zero (suc (suc j)) j0 0<i 0<j = 0<j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
342 gcd>01 zero (suc i0) (suc (suc j)) j0 0<i 0<j = gcd>01 i0 (suc i0) (suc j) (suc (suc j)) 0<i (s≤s z≤n) -- 0 < suc (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
343 gcd>01 (suc zero) i0 zero j0 0<i 0<j = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
344 gcd>01 (suc (suc i)) i0 zero zero 0<i 0<j = 0<i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
345 gcd>01 (suc (suc i)) i0 zero (suc j0) 0<i 0<j = gcd>01 (suc i) (suc (suc i)) j0 (suc j0) (s≤s z≤n) 0<j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
346 gcd>01 (suc i) i0 (suc j) j0 0<i 0<j = subst (λ k → 0 < k ) (sym (gcd033 i i0 j j0 )) (gcd>01 i i0 j j0 0<i 0<j ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
347 gcd033 : (i i0 j j0 : ℕ) → gcd1 (suc i) i0 (suc j) j0 ≡ gcd1 i i0 j j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
348 gcd033 zero zero zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
349 gcd033 zero zero (suc j) zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
350 gcd033 (suc i) zero j zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
351 gcd033 zero zero zero (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
352 gcd033 (suc i) zero zero (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
353 gcd033 zero zero (suc j) (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
354 gcd033 (suc i) zero (suc j) (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
355 gcd033 zero (suc i0) j j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
356 gcd033 (suc i) (suc i0) j j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
357
238
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
358 -- gcd loop invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
359 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
360 record GCD ( i i0 j j0 : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
361 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
362 i<i0 : i ≤ i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
363 j<j0 : j ≤ j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
364 div-i : Dividable i0 ((j0 + i) - j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
365 div-j : Dividable j0 ((i0 + j) - i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
366
245
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
367 div-11 : {i j : ℕ } → Dividable i ((j + i) - j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
368 div-11 {i} {j} = record { factor = 1 ; is-factor = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
369 1 * i + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
370 i + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
371 i ≡⟨ sym (minus+y-y {i} {j}) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
372 (i + j ) - j ≡⟨ cong (λ k → k - j ) (+-comm i j ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
373 (j + i) - j ∎ } where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
374
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
375
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
376 GCDi : {i j : ℕ } → GCD i i j j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
377 GCDi {i} {j} = record { i<i0 = refl-≤ ; j<j0 = refl-≤ ; div-i = div-11 ; div-j = div-11 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
378
238
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
379 GCD-sym : {i i0 j j0 : ℕ} → GCD i i0 j j0 → GCD j j0 i i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
380 GCD-sym g = record { i<i0 = GCD.j<j0 g ; j<j0 = GCD.i<i0 g ; div-i = GCD.div-j g ; div-j = GCD.div-i g }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
381
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
382 pred-≤ : {i i0 : ℕ } → suc i ≤ suc i0 → i ≤ suc i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
383 pred-≤ {i} {i0} (s≤s lt) = ≤-trans lt refl-≤s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
384
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
385 gcd-next : {i i0 j j0 : ℕ} → GCD (suc i) i0 (suc j) j0 → GCD i i0 j j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
386 gcd-next {i} {0} {j} {0} ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
387 gcd-next {i} {suc i0} {j} {suc j0} g = record { i<i0 = pred-≤ (GCD.i<i0 g) ; j<j0 = pred-≤ (GCD.j<j0 g)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
388 ; div-i = proj1 (di-next {i} {suc i0} {j} {suc j0} ⟪ GCD.div-i g , GCD.div-j g ⟫ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
389 ; div-j = proj2 (di-next {i} {suc i0} {j} {suc j0} ⟪ GCD.div-i g , GCD.div-j g ⟫ ) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
390
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
391 gcd-next1 : {i0 j j0 : ℕ} → GCD 0 (suc i0) (suc (suc j)) j0 → GCD i0 (suc i0) (suc j) (suc (suc j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
392 gcd-next1 {i0} {j} {j0} g = record { i<i0 = refl-≤s ; j<j0 = refl-≤s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
393 ; div-i = proj1 (di-next1 ⟪ GCD.div-i g , GCD.div-j g ⟫ ) ; div-j = proj2 (di-next1 ⟪ GCD.div-i g , GCD.div-j g ⟫ ) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
394
243
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 242
diff changeset
395
231
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
396 -- gcd-dividable1 : ( i i0 j j0 : ℕ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
397 -- → Dividable i0 (j0 + i - j ) ∨ Dividable j0 (i0 + j - i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
398 -- → Dividable ( gcd1 i i0 j j0 ) i0 ∧ Dividable ( gcd1 i i0 j j0 ) j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
399 -- gcd-dividable1 zero i0 zero j0 with <-cmp i0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
400 -- ... | tri< a ¬b ¬c = ⟪ div= , {!!} ⟫ -- Dividable i0 (j0 + i - j ) ∧ Dividable j0 (i0 + j - i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
401 -- ... | tri≈ ¬a refl ¬c = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
402 -- ... | tri> ¬a ¬b c = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
403 -- gcd-dividable1 zero i0 (suc zero) j0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
404 -- gcd-dividable1 i i0 j j0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
405
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
406 gcd-dividable : ( i j : ℕ )
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
407 → Dividable ( gcd i j ) i ∧ Dividable ( gcd i j ) j
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
408 gcd-dividable i j = f-induction {_} {_} {ℕ ∧ ℕ}
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
409 {λ p → Dividable ( gcd (proj1 p) (proj2 p) ) (proj1 p) ∧ Dividable ( gcd (proj1 p) (proj2 p) ) (proj2 p)} F I ⟪ i , j ⟫ where
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
410 F : ℕ ∧ ℕ → ℕ
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
411 F ⟪ 0 , 0 ⟫ = 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
412 F ⟪ 0 , suc j ⟫ = 0
222
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 221
diff changeset
413 F ⟪ suc i , 0 ⟫ = 0
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
414 F ⟪ suc i , suc j ⟫ with <-cmp i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
415 ... | tri< a ¬b ¬c = suc j
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
416 ... | tri≈ ¬a b ¬c = 0
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
417 ... | tri> ¬a ¬b c = suc i
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
418 F0 : { i j : ℕ } → F ⟪ i , j ⟫ ≡ 0 → (i ≡ j) ∨ (i ≡ 0 ) ∨ (j ≡ 0)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
419 F0 {zero} {zero} p = case1 refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
420 F0 {zero} {suc j} p = case2 (case1 refl)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
421 F0 {suc i} {zero} p = case2 (case2 refl)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
422 F0 {suc i} {suc j} p with <-cmp i j
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
423 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (sym p) (s≤s z≤n ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
424 ... | tri≈ ¬a refl ¬c = case1 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
425 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym p) (s≤s z≤n ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
426 F00 : {p : ℕ ∧ ℕ} → F p ≡ zero → Dividable (gcd (proj1 p) (proj2 p)) (proj1 p) ∧ Dividable (gcd (proj1 p) (proj2 p)) (proj2 p)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
427 F00 {⟪ i , j ⟫} eq with F0 {i} {j} eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
428 ... | case1 refl = ⟪ subst (λ k → Dividable k i) (sym (gcdmm i i)) div= , subst (λ k → Dividable k i) (sym (gcdmm i i)) div= ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
429 ... | case2 (case1 refl) = ⟪ subst (λ k → Dividable k i) (sym (trans (gcdsym {0} {j} ) (gcd20 j)))div0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
430 , subst (λ k → Dividable k j) (sym (trans (gcdsym {0} {j}) (gcd20 j))) div= ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
431 ... | case2 (case2 refl) = ⟪ subst (λ k → Dividable k i) (sym (gcd20 i)) div=
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
432 , subst (λ k → Dividable k j) (sym (gcd20 i)) div0 ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
433 Fsym : {i j : ℕ } → F ⟪ i , j ⟫ ≡ F ⟪ j , i ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
434 Fsym {0} {0} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
435 Fsym {0} {suc j} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
436 Fsym {suc i} {0} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
437 Fsym {suc i} {suc j} with <-cmp i j | <-cmp j i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
438 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
439 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (¬b (sym b))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
440 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
441 ... | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = ⊥-elim (¬b refl)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
442 ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
443 ... | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = ⊥-elim (¬b refl)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
444 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
445 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (¬b (sym b))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
446 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
447
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
448 record Fdec ( i j : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
449 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
450 ni : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
451 nj : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
452 fdec : 0 < F ⟪ i , j ⟫ → F ⟪ ni , nj ⟫ < F ⟪ i , j ⟫
214
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
453
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
454 fd1 : ( i j k : ℕ ) → i < j → k ≡ j - i → F ⟪ suc i , k ⟫ < F ⟪ suc i , suc j ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
455 fd1 i j 0 i<j eq = ⊥-elim ( nat-≡< eq (minus>0 {i} {j} i<j ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
456 fd1 i j (suc k) i<j eq = fd2 i j k i<j eq where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
457 fd2 : ( i j k : ℕ ) → i < j → suc k ≡ j - i → F ⟪ suc i , suc k ⟫ < F ⟪ suc i , suc j ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
458 fd2 i j k i<j eq with <-cmp i k | <-cmp i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
459 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = fd3 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
460 fd3 : suc k < suc j -- suc j - suc i < suc j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
461 fd3 = subst (λ g → g < suc j) (sym eq) (y-x<y {suc i} {suc j} (s≤s z≤n) (s≤s z≤n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
462 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (⊥-elim (¬a i<j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
463 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = ⊥-elim (⊥-elim (¬a i<j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
464 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
465 ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = ⊥-elim (¬a₁ i<j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
466 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = s≤s z≤n -- i > j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
467 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = fd4 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
468 fd4 : suc i < suc j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
469 fd4 = s≤s a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
470 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (¬a₁ i<j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
471 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (¬a₁ i<j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
472
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
473 fedc0 : (i j : ℕ ) → Fdec i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
474 fedc0 0 0 = record { ni = 0 ; nj = 0 ; fdec = λ () }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
475 fedc0 (suc i) 0 = record { ni = suc i ; nj = 0 ; fdec = λ () }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
476 fedc0 0 (suc j) = record { ni = 0 ; nj = suc j ; fdec = λ () }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
477 fedc0 (suc i) (suc j) with <-cmp i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
478 ... | tri< i<j ¬b ¬c = record { ni = suc i ; nj = j - i ; fdec = λ lt → fd1 i j (j - i) i<j refl }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
479 ... | tri≈ ¬a refl ¬c = record { ni = suc i ; nj = suc j ; fdec = λ lt → ⊥-elim (nat-≡< fd0 lt) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
480 fd0 : {i : ℕ } → 0 ≡ F ⟪ suc i , suc i ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
481 fd0 {i} with <-cmp i i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
482 ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
483 ... | tri≈ ¬a b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
484 ... | tri> ¬a ¬b c = ⊥-elim ( ¬b refl )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
485 ... | tri> ¬a ¬b c = record { ni = i - j ; nj = suc j ; fdec = λ lt →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
486 subst₂ (λ s t → s < t) (Fsym {suc j} {i - j}) (Fsym {suc j} {suc i}) (fd1 j i (i - j) c refl ) }
214
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
487
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
488 ind3 : {i j : ℕ } → i < j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
489 → Dividable (gcd (suc i) (j - i)) (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
490 → Dividable (gcd (suc i) (suc j)) (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
491 ind3 {i} {j} a prev =
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
492 subst (λ k → Dividable k (suc i)) ( begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
493 gcd (suc i) (j - i) ≡⟨ gcdsym {suc i} {j - i} ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
494 gcd (j - i ) (suc i) ≡⟨ sym (gcd+j (j - i) (suc i)) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
495 gcd ((j - i) + suc i) (suc i) ≡⟨ cong (λ k → gcd k (suc i)) ( begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
496 (suc j - suc i) + suc i ≡⟨ minus+n {suc j} {suc i} (<-trans ( s≤s a) a<sa ) ⟩ -- i ≤ n → suc (suc i) ≤ suc (suc (suc n))
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
497 suc j ∎ ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
498 gcd (suc j) (suc i) ≡⟨ gcdsym {suc j} {suc i} ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
499 gcd (suc i) (suc j) ∎ ) prev where open ≡-Reasoning
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
500 ind7 : {i j : ℕ } → (i < j ) → (j - i) + suc i ≡ suc j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
501 ind7 {i} {j} a = begin (suc j - suc i) + suc i ≡⟨ minus+n {suc j} {suc i} (<-trans (s≤s a) a<sa) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
502 suc j ∎ where open ≡-Reasoning
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
503 ind6 : {i j k : ℕ } → i < j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
504 → Dividable k (j - i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
505 → Dividable k (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
506 → Dividable k (suc j)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
507 ind6 {i} {j} {k} i<j dj di = subst (λ g → Dividable k g ) (ind7 i<j) (proj1 (div+div dj di))
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
508 ind4 : {i j : ℕ } → i < j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
509 → Dividable (gcd (suc i) (j - i)) (j - i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
510 → Dividable (gcd (suc i) (suc j)) (j - i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
511 ind4 {i} {j} i<j prev = subst (λ k → k) ( begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
512 Dividable (gcd (suc i) (j - i)) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) (gcdsym {suc i} ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
513 Dividable (gcd (j - i ) (suc i) ) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) ( sym (gcd+j (j - i) (suc i))) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
514 Dividable (gcd ((j - i) + suc i) (suc i)) (j - i) ≡⟨ cong (λ k → Dividable (gcd k (suc i)) (j - i)) (ind7 i<j ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
515 Dividable (gcd (suc j) (suc i)) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) (gcdsym {suc j} ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
516 Dividable (gcd (suc i) (suc j)) (j - i) ∎ ) prev where open ≡-Reasoning
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
517
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
518 ind : ( i j : ℕ ) →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
519 Dividable (gcd (Fdec.ni (fedc0 i j)) (Fdec.nj (fedc0 i j))) (Fdec.ni (fedc0 i j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
520 ∧ Dividable (gcd (Fdec.ni (fedc0 i j)) (Fdec.nj (fedc0 i j))) (Fdec.nj (fedc0 i j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
521 → Dividable (gcd i j) i ∧ Dividable (gcd i j) j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
522 ind zero zero prev = ind0 where
210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 209
diff changeset
523 ind0 : Dividable (gcd zero zero) zero ∧ Dividable (gcd zero zero) zero
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
524 ind0 = ⟪ div0 , div0 ⟫
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
525 ind zero (suc j) prev = ind1 where
210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 209
diff changeset
526 ind1 : Dividable (gcd zero (suc j)) zero ∧ Dividable (gcd zero (suc j)) (suc j)
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
527 ind1 = ⟪ div0 , subst (λ k → Dividable k (suc j)) (sym (trans (gcdsym {zero} {suc j}) (gcd20 (suc j)))) div= ⟫
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
528 ind (suc i) zero prev = ind2 where
210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 209
diff changeset
529 ind2 : Dividable (gcd (suc i) zero) (suc i) ∧ Dividable (gcd (suc i) zero) zero
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
530 ind2 = ⟪ subst (λ k → Dividable k (suc i)) (sym (trans refl (gcd20 (suc i)))) div= , div0 ⟫
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
531 ind (suc i) (suc j) prev with <-cmp i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
532 ... | tri< a ¬b ¬c = ⟪ ind3 a (proj1 prev) , ind6 a (ind4 a (proj2 prev)) (ind3 a (proj1 prev) ) ⟫ where
213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
533 ... | tri≈ ¬a refl ¬c = ⟪ ind5 , ind5 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
534 ind5 : Dividable (gcd (suc i) (suc i)) (suc i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
535 ind5 = subst (λ k → Dividable k (suc j)) (sym (gcdmm (suc i) (suc i))) div=
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
536 ... | tri> ¬a ¬b c = ⟪ ind8 c (proj1 prev) (proj2 prev) , ind10 c (proj2 prev) ⟫ where
214
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
537 ind9 : {i j : ℕ} → i < j → gcd (j - i) (suc i) ≡ gcd (suc j) (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
538 ind9 {i} {j} i<j = begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
539 gcd (j - i ) (suc i) ≡⟨ sym (gcd+j (j - i ) (suc i) ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
540 gcd (j - i + suc i) (suc i) ≡⟨ cong (λ k → gcd k (suc i)) (ind7 i<j ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
541 gcd (suc j) (suc i) ∎ where open ≡-Reasoning
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
542 ind8 : { i j : ℕ } → i < j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
543 → Dividable (gcd (j - i) (suc i)) (j - i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
544 → Dividable (gcd (j - i) (suc i)) (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
545 → Dividable (gcd (suc j) (suc i)) (suc j)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
546 ind8 {i} {j} i<j dji di = ind6 i<j (subst (λ k → Dividable k (j - i)) (ind9 i<j) dji) (subst (λ k → Dividable k (suc i)) (ind9 i<j) di)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
547 ind10 : { i j : ℕ } → j < i
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
548 → Dividable (gcd (i - j) (suc j)) (suc j)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
549 → Dividable (gcd (suc i) (suc j)) (suc j)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
550 ind10 {i} {j} j<i dji = subst (λ g → Dividable g (suc j) ) (begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
551 gcd (i - j) (suc j) ≡⟨ sym (gcd+j (i - j) (suc j)) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
552 gcd (i - j + suc j) (suc j) ≡⟨ cong (λ k → gcd k (suc j)) (ind7 j<i ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
553 gcd (suc i) (suc j) ∎ ) dji where open ≡-Reasoning
210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 209
diff changeset
554
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
555 I : Finduction (ℕ ∧ ℕ) _ F
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
556 I = record {
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
557 fzero = F00
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
558 ; pnext = λ p → ⟪ Fdec.ni (fedc0 (proj1 p) (proj2 p)) , Fdec.nj (fedc0 (proj1 p) (proj2 p)) ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
559 ; decline = λ {p} lt → Fdec.fdec (fedc0 (proj1 p) (proj2 p)) lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
560 ; ind = λ {p} prev → ind (proj1 p ) ( proj2 p ) prev
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
561 }
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
562
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
563 record Euclid (i j gcd : ℕ ) : Set where
233
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
564 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
565 eqa : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
566 eqb : ℕ
235
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
567 is-equ< : (eqa * i) > (eqb * j) → ((eqa * i) - (eqb * j) ≡ gcd )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
568 is-equ> : (eqb * j) > (eqa * i) → ((eqb * j) - (eqa * i) ≡ gcd )
234
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 233
diff changeset
569
235
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
570 ge3 : {a b c d : ℕ } → b > a → b - a ≡ d - c → d > c
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
571 ge3 {a} {b} {c} {d} b>a eq = minus>0→x<y (subst (λ k → 0 < k ) eq (minus>0 b>a))
234
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 233
diff changeset
572
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
573 ge01 : ( i0 j j0 ea eb : ℕ )
239
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 238
diff changeset
574 → ( di : GCD 0 (suc i0) (suc (suc j)) j0 )
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
575 → (((ea + eb * (Dividable.factor (GCD.div-i di))) * suc i0) ≡ (ea * suc i0) + (eb * (Dividable.factor (GCD.div-i di)) ) * suc i0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
576 ∧ ( (eb * j0) ≡ (eb * suc (suc j) + (eb * (Dividable.factor (GCD.div-i di)) ) * suc i0) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
577 ge01 i0 j j0 ea eb di = ⟪ ge011 , ge012 ⟫ where
239
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 238
diff changeset
578 f = Dividable.factor (GCD.div-i di)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 238
diff changeset
579 ge4 : suc (j0 + 0) > suc (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 238
diff changeset
580 ge4 = subst (λ k → k > suc (suc j)) (+-comm 0 _ ) ( s≤s (GCD.j<j0 di ))
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
581 ge011 : (ea + eb * f) * suc i0 ≡ ea * suc i0 + eb * f * suc i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
582 ge011 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
583 (ea + eb * f) * suc i0 ≡⟨ *-distribʳ-+ (suc i0) ea _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
584 ea * suc i0 + eb * f * suc i0 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
585 ge012 : eb * j0 ≡ eb * suc (suc j) + eb * f * suc i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
586 ge012 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
587 eb * j0 ≡⟨ cong (λ k → eb * k) ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
588 j0 ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
589 j0 + 0 ≡⟨ sym (minus+n {j0 + 0} {suc (suc j)} ge4) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
590 ((j0 + 0) - (suc (suc j))) + suc (suc j) ≡⟨ +-comm _ (suc (suc j)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
591 suc (suc j) + ((j0 + 0) - suc (suc j)) ≡⟨ cong (λ k → suc (suc j) + k ) (sym (Dividable.is-factor (GCD.div-i di))) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
592 suc (suc j) + (f * suc i0 + 0) ≡⟨ cong (λ k → suc (suc j) + k ) ( +-comm _ 0 ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
593 suc (suc j) + (f * suc i0 ) ∎ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
594 eb * (suc (suc j) + (f * suc i0 ) ) ≡⟨ *-distribˡ-+ eb (suc (suc j)) (f * suc i0) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
595 eb * suc (suc j) + eb * (f * suc i0) ≡⟨ cong (λ k → eb * suc (suc j) + k ) ((sym (*-assoc eb _ _ )) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
596 eb * suc (suc j) + eb * f * suc i0 ∎ where open ≡-Reasoning
239
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 238
diff changeset
597
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
598
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
599 gcd-euclid1 : ( i i0 j j0 : ℕ ) → GCD i i0 j j0 → Euclid i0 j0 (gcd1 i i0 j j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
600 gcd-euclid1 zero i0 zero j0 di with <-cmp i0 j0
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
601 ... | tri< a' ¬b ¬c = record { eqa = 1 ; eqb = 0 ; is-equ< = λ _ → +-comm _ 0 ; is-equ> = λ () }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
602 ... | tri≈ ¬a refl ¬c = record { eqa = 1 ; eqb = 0 ; is-equ< = λ _ → +-comm _ 0 ; is-equ> = λ () }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
603 ... | tri> ¬a ¬b c = record { eqa = 0 ; eqb = 1 ; is-equ< = λ () ; is-equ> = λ _ → +-comm _ 0 }
243
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 242
diff changeset
604 -- i<i0 : zero ≤ i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 242
diff changeset
605 -- j<j0 : 1 ≤ j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 242
diff changeset
606 -- div-i : Dividable i0 ((j0 + zero) - 1) -- fi * i0 ≡ (j0 + zero) - 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 242
diff changeset
607 -- div-j : Dividable j0 ((i0 + 1) - zero) -- fj * j0 ≡ (i0 + 1) - zero
244
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
608 gcd-euclid1 zero i0 (suc zero) j0 di = record { eqa = 1 ; eqb = Dividable.factor (GCD.div-j di) ; is-equ< = λ lt → ⊥-elim ( ge7 lt) ; is-equ> = λ _ → ge6 } where
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
609 ge6 : (Dividable.factor (GCD.div-j di) * j0) - (1 * i0) ≡ gcd1 zero i0 1 j0
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
610 ge6 = begin
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
611 (Dividable.factor (GCD.div-j di) * j0) - (1 * i0) ≡⟨ cong (λ k → k - (1 * i0)) (+-comm 0 _) ⟩
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
612 (Dividable.factor (GCD.div-j di) * j0 + 0) - (1 * i0) ≡⟨ cong (λ k → k - (1 * i0)) (Dividable.is-factor (GCD.div-j di) ) ⟩
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
613 ((i0 + 1) - zero) - (1 * i0) ≡⟨ refl ⟩
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
614 (i0 + 1) - (i0 + 0) ≡⟨ minus+yx-yz {_} {i0} {0} ⟩
243
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 242
diff changeset
615 1 ∎ where open ≡-Reasoning
244
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
616 ge7 : ¬ ( 1 * i0 > Dividable.factor (GCD.div-j di) * j0 )
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
617 ge7 lt = ⊥-elim ( nat-≡< (sym ( minus<=0 (<to≤ lt))) (subst (λ k → 0 < k) (sym ge6) (s≤s z≤n)))
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
618 gcd-euclid1 zero zero (suc (suc j)) j0 di = record { eqa = 0 ; eqb = 1 ; is-equ< = λ () ; is-equ> = λ _ → +-comm _ 0 }
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
619 gcd-euclid1 zero (suc i0) (suc (suc j)) j0 di with gcd-euclid1 i0 (suc i0) (suc j) (suc (suc j)) ( gcd-next1 di )
239
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 238
diff changeset
620 ... | e = record { eqa = ea + eb * f ; eqb = eb
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
621 ; is-equ< = λ lt → subst (λ k → ((ea + eb * f) * suc i0) - (eb * j0) ≡ k ) (Euclid.is-equ< e (ge3 lt (ge1 ))) (ge1 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
622 ; is-equ> = λ lt → subst (λ k → (eb * j0) - ((ea + eb * f) * suc i0) ≡ k ) (Euclid.is-equ> e (ge3 lt (ge2 ))) (ge2 ) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
623 ea = Euclid.eqa e
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
624 eb = Euclid.eqb e
238
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 237
diff changeset
625 f = Dividable.factor (GCD.div-i di)
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
626 ge1 : ((ea + eb * f) * suc i0) - (eb * j0) ≡ (ea * suc i0) - (eb * suc (suc j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
627 ge1 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
628 ((ea + eb * f) * suc i0) - (eb * j0) ≡⟨ cong₂ (λ j k → j - k ) (proj1 (ge01 i0 j j0 ea eb di)) (proj2 (ge01 i0 j j0 ea eb di)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
629 (ea * suc i0 + (eb * f ) * suc i0 ) - ( eb * suc (suc j) + ((eb * f) * (suc i0)) ) ≡⟨ minus+xy-zy {ea * suc i0} {(eb * f ) * suc i0} {eb * suc (suc j)} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
630 (ea * suc i0) - (eb * suc (suc j)) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
631 ge2 : (eb * j0) - ((ea + eb * f) * suc i0) ≡ (eb * suc (suc j)) - (ea * suc i0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
632 ge2 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
633 (eb * j0) - ((ea + eb * f) * suc i0) ≡⟨ cong₂ (λ j k → j - k ) (proj2 (ge01 i0 j j0 ea eb di)) (proj1 (ge01 i0 j j0 ea eb di)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
634 ( eb * suc (suc j) + ((eb * f) * (suc i0)) ) - (ea * suc i0 + (eb * f ) * suc i0 ) ≡⟨ minus+xy-zy {eb * suc (suc j)}{(eb * f ) * suc i0} {ea * suc i0} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
635 (eb * suc (suc j)) - (ea * suc i0) ∎ where open ≡-Reasoning
244
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
636 gcd-euclid1 (suc zero) i0 zero j0 di = record { eqb = 1 ; eqa = Dividable.factor (GCD.div-i di) ; is-equ> = λ lt → ⊥-elim ( ge7' lt) ; is-equ< = λ _ → ge6' } where
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
637 ge6' : (Dividable.factor (GCD.div-i di) * i0) - (1 * j0) ≡ gcd1 (suc zero) i0 zero j0
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
638 ge6' = begin
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
639 (Dividable.factor (GCD.div-i di) * i0) - (1 * j0) ≡⟨ cong (λ k → k - (1 * j0)) (+-comm 0 _) ⟩
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
640 (Dividable.factor (GCD.div-i di) * i0 + 0) - (1 * j0) ≡⟨ cong (λ k → k - (1 * j0)) (Dividable.is-factor (GCD.div-i di) ) ⟩
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
641 ((j0 + 1) - zero) - (1 * j0) ≡⟨ refl ⟩
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
642 (j0 + 1) - (j0 + 0) ≡⟨ minus+yx-yz {_} {j0} {0} ⟩
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
643 1 ∎ where open ≡-Reasoning
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
644 ge7' : ¬ ( 1 * j0 > Dividable.factor (GCD.div-i di) * i0 )
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
645 ge7' lt = ⊥-elim ( nat-≡< (sym ( minus<=0 (<to≤ lt))) (subst (λ k → 0 < k) (sym ge6') (s≤s z≤n)))
08994de7c82f gcd-euclid1 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 243
diff changeset
646 gcd-euclid1 (suc (suc i)) i0 zero zero di = record { eqb = 0 ; eqa = 1 ; is-equ> = λ () ; is-equ< = λ _ → +-comm _ 0 }
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
647 gcd-euclid1 (suc (suc i)) i0 zero (suc j0) di with gcd-euclid1 (suc i) (suc (suc i)) j0 (suc j0) (GCD-sym (gcd-next1 (GCD-sym di)))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
648 ... | e = record { eqa = ea ; eqb = eb + ea * f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
649 ; is-equ< = λ lt → subst (λ k → ((ea * i0) - ((eb + ea * f) * suc j0)) ≡ k ) (Euclid.is-equ< e (ge3 lt ge4)) ge4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
650 ; is-equ> = λ lt → subst (λ k → (((eb + ea * f) * suc j0) - (ea * i0)) ≡ k ) (Euclid.is-equ> e (ge3 lt ge5)) ge5 } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
651 ea = Euclid.eqa e
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
652 eb = Euclid.eqb e
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
653 f = Dividable.factor (GCD.div-j di)
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
654 ge5 : (((eb + ea * f) * suc j0) - (ea * i0)) ≡ ((eb * suc j0) - (ea * suc (suc i)))
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
655 ge5 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
656 ((eb + ea * f) * suc j0) - (ea * i0) ≡⟨ cong₂ (λ j k → j - k ) (proj1 (ge01 j0 i i0 eb ea (GCD-sym di) )) (proj2 (ge01 j0 i i0 eb ea (GCD-sym di) )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
657 ( eb * suc j0 + (ea * f )* suc j0) - (ea * suc (suc i) + (ea * f )* suc j0) ≡⟨ minus+xy-zy {_} {(ea * f )* suc j0} {ea * suc (suc i)} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
658 (eb * suc j0) - (ea * suc (suc i)) ∎ where open ≡-Reasoning
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
659 ge4 : ((ea * i0) - ((eb + ea * f) * suc j0)) ≡ ((ea * suc (suc i)) - (eb * suc j0))
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
660 ge4 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
661 (ea * i0) - ((eb + ea * f) * suc j0) ≡⟨ cong₂ (λ j k → j - k ) (proj2 (ge01 j0 i i0 eb ea (GCD-sym di) )) (proj1 (ge01 j0 i i0 eb ea (GCD-sym di) )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
662 (ea * suc (suc i) + (ea * f )* suc j0) - ( eb * suc j0 + (ea * f )* suc j0) ≡⟨ minus+xy-zy {ea * suc (suc i)} {(ea * f )* suc j0} { eb * suc j0} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
663 (ea * suc (suc i)) - (eb * suc j0) ∎ where open ≡-Reasoning
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
664 gcd-euclid1 (suc zero) i0 (suc j) j0 di =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
665 gcd-euclid1 zero i0 j j0 (gcd-next di)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
666 gcd-euclid1 (suc (suc i)) i0 (suc j) j0 di =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 240
diff changeset
667 gcd-euclid1 (suc i) i0 j j0 (gcd-next di)
233
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
668
231
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
669
245
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
670 gcd-euclid : ( p a b : ℕ ) → 1 < p → 0 < a → 0 < b → ((i : ℕ ) → i < p → 0 < i → gcd p i ≡ 1) → Dividable p (a * b) → Dividable p a ∨ Dividable p b
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
671 gcd-euclid p a b 1<p 0<a 0<b prime div-ab with decD {p} {a} 1<p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
672 ... | yes y = case1 y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
673 ... | no np = case2 ge16 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
674 ge12 : (x : ℕ) → 0 < x → ( gcd p x ≡ 1 ) ∨ ( Dividable p x )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
675 ge12 x 0<x with decD {p} {x} 1<p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
676 ... | yes y = case2 y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
677 ... | no nx with <-cmp (gcd p x ) 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
678 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (s≤s (gcd>0 p x (<-trans a<sa 1<p) 0<x) ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
679 ... | tri≈ ¬a b ¬c = case1 b
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
680 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym (prime (gcd p x) {!!} (gcd>0 p x (<-trans a<sa 1<p) 0<x))) {!!} ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
681 ge13 : gcd p (gcd p x) ≡ gcd p x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
682 ge13 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
683 ge10 : gcd p a ≡ 1
246
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 245
diff changeset
684 ge10 with ge12 a 0<a
245
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
685 ... | case1 x = x
246
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 245
diff changeset
686 ... | case2 x = ⊥-elim ( np x )
245
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
687 ge11 : Euclid p a (gcd p a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
688 ge11 = gcd-euclid1 p p a a GCDi
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
689 ge14 : ( Euclid.eqa ge11 * p ) ≤ ( Euclid.eqb ge11 * a ) → (b * Euclid.eqa ge11 - Dividable.factor div-ab * Euclid.eqb ge11) * p + 0 ≡ b
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
690 ge14 lt = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
691 (b * Euclid.eqa ge11 - Dividable.factor div-ab * Euclid.eqb ge11) * p + 0 ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
692 (b * Euclid.eqa ge11 - Dividable.factor div-ab * Euclid.eqb ge11) * p ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
693 (b * Euclid.eqa ge11) * p - (Dividable.factor div-ab * Euclid.eqb ge11) * p ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
694 (b * Euclid.eqa ge11) * p - (Dividable.factor div-ab * Euclid.eqb ge11) * p ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
695 (b * Euclid.eqa ge11) * p - Dividable.factor div-ab * (Euclid.eqb ge11 * p) ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
696 (b * Euclid.eqa ge11) * p - Dividable.factor div-ab * (p * Euclid.eqb ge11 ) ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
697 (b * Euclid.eqa ge11) * p - (Dividable.factor div-ab * p ) * Euclid.eqb ge11 ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
698 (b * Euclid.eqa ge11) * p - (Dividable.factor div-ab * p + 0) * Euclid.eqb ge11 ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
699 (b * Euclid.eqa ge11) * p - (a * b) * Euclid.eqb ge11 ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
700 (b * Euclid.eqa ge11) * p - (b * a) * Euclid.eqb ge11 ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
701 (b * Euclid.eqa ge11) * p - b * (a * Euclid.eqb ge11 ) ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
702 b * (Euclid.eqa ge11 * p) - b * (a * Euclid.eqb ge11 ) ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
703 b * ( Euclid.eqa ge11 * p - a * Euclid.eqb ge11 ) ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
704 b * ( Euclid.eqa ge11 * p - Euclid.eqb ge11 * a ) ≡⟨ cong (b *_) {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
705 b * gcd p a ≡⟨ cong (b *_) ge10 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
706 b * 1 ≡⟨ m*1=m ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
707 b ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
708 ge15 : ( Euclid.eqa ge11 * p ) > ( Euclid.eqb ge11 * a ) → (Dividable.factor div-ab * Euclid.eqb ge11 - b * Euclid.eqa ge11 ) * p + 0 ≡ b
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
709 ge15 = {!!}
246
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 245
diff changeset
710 ge17 : (x y : ℕ ) → x ≡ y → x ≤ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 245
diff changeset
711 ge17 x x refl = refl-≤
245
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
712 ge16 : Dividable p b
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
713 ge16 with <-cmp ( Euclid.eqa ge11 * p ) ( Euclid.eqb ge11 * a )
246
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 245
diff changeset
714 ... | tri< a ¬b ¬c = record { factor = b * Euclid.eqa ge11 - Dividable.factor div-ab * Euclid.eqb ge11 ; is-factor = ge14 (<to≤ a) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 245
diff changeset
715 ... | tri≈ ¬a eq ¬c = record { factor = b * Euclid.eqa ge11 - Dividable.factor div-ab * Euclid.eqb ge11 ; is-factor = ge14 (ge17 _ _ eq) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 245
diff changeset
716 ... | tri> ¬a ¬b c = record { factor = Dividable.factor div-ab * Euclid.eqb ge11 - b * Euclid.eqa ge11 ; is-factor = ge15 c }
245
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
717
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 244
diff changeset
718
233
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
719 div→gcd : {n k : ℕ } → k > 1 → Dividable k n → gcd n k ≡ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
720 div→gcd {n} {k} k>1 = n-induction {_} {_} {ℕ} {λ m → Dividable k m → gcd m k ≡ k } (λ x → x) I n where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
721 decl : {m : ℕ } → 0 < m → m - k < m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
722 decl {m} 0<m = y-x<y (<-trans a<sa k>1 ) 0<m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
723 ind : (m : ℕ ) → (Dividable k (m - k) → gcd (m - k) k ≡ k) → Dividable k m → gcd m k ≡ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
724 ind m prev d with <-cmp (suc m) k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
725 ... | tri≈ ¬a refl ¬c = ⊥-elim ( div+1 k>1 d div= )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
726 ... | tri> ¬a ¬b c = subst (λ g → g ≡ k) ind1 ( prev (proj2 (div-div k>1 div= d))) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
727 ind1 : gcd (m - k) k ≡ gcd m k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
728 ind1 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
729 gcd (m - k) k ≡⟨ sym (gcd+j (m - k) _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
730 gcd (m - k + k) k ≡⟨ cong (λ g → gcd g k) (minus+n {m} {k} c) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
731 gcd m k ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
732 ... | tri< a ¬b ¬c with <-cmp 0 m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
733 ... | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim ( div<k k>1 a₁ (<-trans a<sa a) d )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
734 ... | tri≈ ¬a refl ¬c₁ = subst (λ g → g ≡ k ) (gcdsym {k} {0} ) (gcd20 k)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
735 fzero : (m : ℕ) → (m - k) ≡ zero → Dividable k m → gcd m k ≡ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
736 fzero 0 eq d = trans (gcdsym {0} {k} ) (gcd20 k)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
737 fzero (suc m) eq d with <-cmp (suc m) k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
738 ... | tri< a ¬b ¬c = ⊥-elim ( div<k k>1 (s≤s z≤n) a d )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
739 ... | tri≈ ¬a refl ¬c = gcdmm k k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
740 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym eq) (minus>0 c) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
741 I : Ninduction ℕ _ (λ x → x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
742 I = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
743 pnext = λ p → p - k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
744 ; fzero = λ {m} eq → fzero m eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
745 ; decline = λ {m} lt → decl lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
746 ; ind = λ {p} prev → ind p prev
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 232
diff changeset
747 }
206
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 205
diff changeset
748
167
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
749 gcdmul+1 : ( m n : ℕ ) → gcd (m * n + 1) n ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
750 gcdmul+1 zero n = gcd204 n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
751 gcdmul+1 (suc m) n = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
752 gcd (suc m * n + 1) n ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
753 gcd (n + m * n + 1) n ≡⟨ cong (λ k → gcd k n ) (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
754 n + m * n + 1 ≡⟨ cong (λ k → k + 1) (+-comm n _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
755 m * n + n + 1 ≡⟨ +-assoc (m * n) _ _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
756 m * n + (n + 1) ≡⟨ cong (λ k → m * n + k) (+-comm n _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
757 m * n + (1 + n) ≡⟨ sym ( +-assoc (m * n) _ _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
758 m * n + 1 + n ∎
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
759 ) ⟩
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
760 gcd (m * n + 1 + n) n ≡⟨ gcd+j (m * n + 1) n ⟩
167
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
761 gcd (m * n + 1) n ≡⟨ gcdmul+1 m n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
762 1 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
763
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
764 --gcd-dividable : ( i j : ℕ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
765 -- → Dividable ( gcd i j ) i ∧ Dividable ( gcd i j ) j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
766
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
767 f-div>0 : { k i : ℕ } → (d : Dividable k i ) → 0 < i → 0 < Dividable.factor d
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
768 f-div>0 {k} {i} d 0<i with <-cmp 0 (Dividable.factor d)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
769 ... | tri< a ¬b ¬c = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
770 ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
771 0 * k + 0 ≡⟨ cong (λ g → g * k + 0) b ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
772 Dividable.factor d * k + 0 ≡⟨ Dividable.is-factor d ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
773 i ∎ ) 0<i ) where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
774
230
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
775 m*n=m→n : {m n : ℕ } → 0 < m → m * n ≡ m * 1 → n ≡ 1
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
776 m*n=m→n {suc m} {n} (s≤s lt) eq = *-cancelˡ-≡ m eq
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
777
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
778 gcd-≤ : ( i j : ℕ ) → 0 < i → i ≤ j → gcd i j ≤ i
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
779 gcd-≤ zero _ () z≤n
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
780 gcd-≤ (suc i) (suc j) _ (s≤s i<j) = begin
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
781 gcd (suc i) (suc j) ≡⟨ sym m*1=m ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
782 gcd (suc i) (suc j) * 1 ≤⟨ *-monoʳ-≤ (gcd (suc i) (suc j)) (f-div>0 d (s≤s z≤n)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
783 gcd (suc i) (suc j) * f ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
784 gcd (suc i) (suc j) * f + 0 ≡⟨ cong (λ k → k + 0) (*-comm (gcd (suc i) (suc j)) _ ) ⟩
230
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
785 Dividable.factor (proj1 (gcd-dividable (suc i) (suc j))) * gcd (suc i) (suc j) + 0 ≡⟨ Dividable.is-factor (proj1 (gcd-dividable (suc i) (suc j))) ⟩
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
786 suc i ∎ where
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
787 d = proj1 (gcd-dividable (suc i) (suc j))
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
788 f = Dividable.factor (proj1 (gcd-dividable (suc i) (suc j)))
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
789 open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
790
230
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
791 gcd-≥ : ( i j : ℕ ) → 0 < i → i ≤ j → gcd j i ≤ i
a72bcc6eadad prime done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 227
diff changeset
792 gcd-≥ i j 0<i i≤j = subst (λ k → k ≤ i) (gcdsym {i} {j}) ( gcd-≤ i j 0<i i≤j )