Mercurial > hg > Members > kono > Proof > category
annotate cat-utility.agda @ 491:04da2c458d44
comma-a0 commuativity remains
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Mar 2017 10:41:07 +0900 |
parents | c257347a27f3 |
children | c7b8017bcd4d |
rev | line source |
---|---|
56 | 1 module cat-utility where |
2 | |
3 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
4 | |
87 | 5 open import Category -- https://github.com/konn/category-agda |
6 open import Level | |
7 --open import Category.HomReasoning | |
8 open import HomReasoning | |
56 | 9 |
87 | 10 open Functor |
56 | 11 |
87 | 12 id1 : ∀{c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (a : Obj A ) → Hom A a a |
13 id1 A a = (Id {_} {_} {_} {A} a) | |
253 | 14 -- We cannot make A implicit |
56 | 15 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
16 record IsUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
87 | 17 ( U : Functor B A ) |
18 ( F : Obj A → Obj B ) | |
19 ( η : (a : Obj A) → Hom A a ( FObj U (F a) ) ) | |
20 ( _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) → Hom B (F a ) b ) | |
21 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
22 field | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
23 universalMapping : {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → |
101 | 24 A [ A [ FMap U ( f * ) o η a ] ≈ f ] |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
25 uniquness : {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → { g : Hom B (F a) b } → |
101 | 26 A [ A [ FMap U g o η a ] ≈ f ] → B [ f * ≈ g ] |
56 | 27 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
28 record UniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
87 | 29 ( U : Functor B A ) |
30 ( F : Obj A → Obj B ) | |
31 ( η : (a : Obj A) → Hom A a ( FObj U (F a) ) ) | |
32 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
33 infixr 11 _* | |
34 field | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
35 _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) → Hom B (F a ) b |
87 | 36 isUniversalMapping : IsUniversalMapping A B U F η _* |
56 | 37 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
38 record coIsUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
268 | 39 ( F : Functor A B ) |
40 ( U : Obj B → Obj A ) | |
41 ( ε : (b : Obj B) → Hom B ( FObj F (U b) ) b ) | |
42 ( _*' : { b : Obj B}{ a : Obj A} → ( Hom B (FObj F a) b ) → Hom A a (U b ) ) | |
43 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
44 field | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
45 couniversalMapping : {b : Obj B} { a : Obj A } → { f : Hom B (FObj F a) b } → |
268 | 46 B [ B [ ε b o FMap F ( f *' ) ] ≈ f ] |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
47 couniquness : {b : Obj B} { a : Obj A } → { f : Hom B (FObj F a) b } → { g : Hom A a (U b) } → |
268 | 48 B [ B [ ε b o FMap F g ] ≈ f ] → A [ f *' ≈ g ] |
49 | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
50 record coUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
268 | 51 ( F : Functor A B ) |
52 ( U : Obj B → Obj A ) | |
53 ( ε : (b : Obj B) → Hom B ( FObj F (U b) ) b ) | |
54 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
55 infixr 11 _*' | |
56 field | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
57 _*' : { b : Obj B}{ a : Obj A} → ( Hom B (FObj F a) b ) → Hom A a (U b ) |
268 | 58 iscoUniversalMapping : coIsUniversalMapping A B F U ε _*' |
59 | |
87 | 60 open NTrans |
61 open import Category.Cat | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
62 record IsAdjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
87 | 63 ( U : Functor B A ) |
64 ( F : Functor A B ) | |
65 ( η : NTrans A A identityFunctor ( U ○ F ) ) | |
66 ( ε : NTrans B B ( F ○ U ) identityFunctor ) | |
67 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
68 field | |
69 adjoint1 : { b : Obj B } → | |
70 A [ A [ ( FMap U ( TMap ε b )) o ( TMap η ( FObj U b )) ] ≈ id1 A (FObj U b) ] | |
71 adjoint2 : {a : Obj A} → | |
72 B [ B [ ( TMap ε ( FObj F a )) o ( FMap F ( TMap η a )) ] ≈ id1 B (FObj F a) ] | |
56 | 73 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
74 record Adjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
87 | 75 ( U : Functor B A ) |
76 ( F : Functor A B ) | |
77 ( η : NTrans A A identityFunctor ( U ○ F ) ) | |
78 ( ε : NTrans B B ( F ○ U ) identityFunctor ) | |
79 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
80 field | |
81 isAdjunction : IsAdjunction A B U F η ε | |
202
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
82 U-functor = U |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
83 F-functor = F |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
84 Eta = η |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
85 Epsiron = ε |
56 | 86 |
87 | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
88 record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
87 | 89 ( T : Functor A A ) |
90 ( η : NTrans A A identityFunctor T ) | |
91 ( μ : NTrans A A (T ○ T) T) | |
92 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | |
93 field | |
94 assoc : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] | |
95 unity1 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] | |
96 unity2 : {a : Obj A} → A [ A [ TMap μ a o (FMap T (TMap η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] | |
56 | 97 |
87 | 98 record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T) |
99 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | |
100 field | |
101 isMonad : IsMonad A T η μ | |
130 | 102 -- g ○ f = μ(c) T(g) f |
103 join : { a b : Obj A } → { c : Obj A } → | |
104 ( Hom A b ( FObj T c )) → ( Hom A a ( FObj T b)) → Hom A a ( FObj T c ) | |
105 join {_} {_} {c} g f = A [ TMap μ c o A [ FMap T g o f ] ] | |
106 | |
56 | 107 |
87 | 108 Functor*Nat : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') |
300 | 109 (F : Functor B C) → { G H : Functor A B } → ( n : NTrans A B G H ) → NTrans A C (F ○ G) (F ○ H) |
87 | 110 Functor*Nat A {B} C F {G} {H} n = record { |
300 | 111 TMap = λ a → FMap F (TMap n a) |
87 | 112 ; isNTrans = record { |
130 | 113 commute = commute |
87 | 114 } |
115 } where | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
116 commute : {a b : Obj A} {f : Hom A a b} |
87 | 117 → C [ C [ (FMap F ( FMap H f )) o ( FMap F (TMap n a)) ] ≈ C [ (FMap F (TMap n b )) o (FMap F (FMap G f)) ] ] |
130 | 118 commute {a} {b} {f} = let open ≈-Reasoning (C) in |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
119 begin |
87 | 120 (FMap F ( FMap H f )) o ( FMap F (TMap n a)) |
121 ≈⟨ sym (distr F) ⟩ | |
122 FMap F ( B [ (FMap H f) o TMap n a ]) | |
123 ≈⟨ IsFunctor.≈-cong (isFunctor F) ( nat n ) ⟩ | |
124 FMap F ( B [ (TMap n b ) o FMap G f ] ) | |
125 ≈⟨ distr F ⟩ | |
126 (FMap F (TMap n b )) o (FMap F (FMap G f)) | |
127 ∎ | |
56 | 128 |
87 | 129 Nat*Functor : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') |
300 | 130 { G H : Functor B C } → ( n : NTrans B C G H ) → (F : Functor A B) → NTrans A C (G ○ F) (H ○ F) |
87 | 131 Nat*Functor A {B} C {G} {H} n F = record { |
300 | 132 TMap = λ a → TMap n (FObj F a) |
87 | 133 ; isNTrans = record { |
130 | 134 commute = commute |
87 | 135 } |
136 } where | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
137 commute : {a b : Obj A} {f : Hom A a b} |
87 | 138 → C [ C [ ( FMap H (FMap F f )) o ( TMap n (FObj F a)) ] ≈ C [ (TMap n (FObj F b )) o (FMap G (FMap F f)) ] ] |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
139 commute {a} {b} {f} = IsNTrans.commute ( isNTrans n) |
56 | 140 |
87 | 141 -- T ≃ (U_R ○ F_R) |
142 -- μ = U_R ε F_R | |
143 -- nat-ε | |
144 -- nat-η -- same as η but has different types | |
84 | 145 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
146 record MResolution {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) ( B : Category c₁' c₂' ℓ' ) |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
147 ( T : Functor A A ) |
94
4fa718e4fd77
Comparison Functor constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
91
diff
changeset
|
148 -- { η : NTrans A A identityFunctor T } |
4fa718e4fd77
Comparison Functor constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
91
diff
changeset
|
149 -- { μ : NTrans A A (T ○ T) T } |
4fa718e4fd77
Comparison Functor constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
91
diff
changeset
|
150 -- { M : Monad A T η μ } |
87 | 151 ( UR : Functor B A ) ( FR : Functor A B ) |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
152 { ηR : NTrans A A identityFunctor ( UR ○ FR ) } |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
153 { εR : NTrans B B ( FR ○ UR ) identityFunctor } |
87 | 154 { μR : NTrans A A ( (UR ○ FR) ○ ( UR ○ FR )) ( UR ○ FR ) } |
155 ( Adj : Adjunction A B UR FR ηR εR ) | |
156 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
157 field | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
158 T=UF : T ≃ (UR ○ FR) |
300 | 159 μ=UεF : {x : Obj A } → A [ TMap μR x ≈ FMap UR ( TMap εR ( FObj FR x ) ) ] |
160 -- ηR=η : {x : Obj A } → A [ TMap ηR x ≈ TMap η x ] -- We need T → UR FR conversion | |
161 -- μR=μ : {x : Obj A } → A [ TMap μR x ≈ TMap μ x ] | |
86 | 162 |
88 | 163 |
350
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
164 -- |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
165 -- e f |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
166 -- c -------→ a ---------→ b |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
167 -- ^ . ---------→ |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
168 -- | . g |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
169 -- |k . |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
170 -- | . h |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
171 -- d |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
172 |
443 | 173 record IsEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (e : Hom A c a) (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
260 | 174 field |
175 fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] | |
176 k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c | |
177 ek=h : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → A [ A [ e o k {d} h eq ] ≈ h ] | |
178 uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → {k' : Hom A d c } → | |
179 A [ A [ e o k' ] ≈ h ] → A [ k {d} h eq ≈ k' ] | |
443 | 180 equalizer1 : Hom A c a |
181 equalizer1 = e | |
260 | 182 |
443 | 183 record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
440 | 184 field |
443 | 185 equalizer-c : Obj A |
186 equalizer : Hom A equalizer-c a | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
187 isEqualizer : IsEqualizer A equalizer f g |
440 | 188 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
189 -- |
260 | 190 -- Product |
191 -- | |
264 | 192 -- c |
193 -- f | g | |
194 -- |f×g | |
195 -- v | |
300 | 196 -- a <-------- ab ---------→ b |
264 | 197 -- π1 π2 |
260 | 198 |
199 | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
200 record Product { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a b ab : Obj A) |
260 | 201 ( π1 : Hom A ab a ) |
202 ( π2 : Hom A ab b ) | |
203 : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | |
204 field | |
205 _×_ : {c : Obj A} ( f : Hom A c a ) → ( g : Hom A c b ) → Hom A c ab | |
206 π1fxg=f : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π1 o ( f × g ) ] ≈ f ] | |
207 π2fxg=g : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π2 o ( f × g ) ] ≈ g ] | |
208 uniqueness : {c : Obj A} { h : Hom A c ab } → A [ ( A [ π1 o h ] ) × ( A [ π2 o h ] ) ≈ h ] | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
209 ×-cong : {c : Obj A} { f f' : Hom A c a } → { g g' : Hom A c b } → A [ f ≈ f' ] → A [ g ≈ g' ] → A [ f × g ≈ f' × g' ] |
440 | 210 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
211 record CreateProduct { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) |
440 | 212 : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
213 field | |
214 product : (a b : Obj A) -> Obj A | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
215 π1 : (a b : Obj A) -> Hom A (product a b ) a |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
216 π2 : (a b : Obj A) -> Hom A (product a b ) b |
440 | 217 isProduct : (a b : Obj A) -> Product A a b (product a b) (π1 a b ) (π2 a b) |
260 | 218 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
219 ----- |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
220 -- |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
221 -- product on arbitrary index |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
222 -- |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
223 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
224 record IProduct { c c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Set c) |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
225 ( p : Obj A ) -- product |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
226 ( ai : I → Obj A ) -- families |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
227 ( pi : (i : I ) → Hom A p ( ai i ) ) -- projections |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
228 : Set (c ⊔ ℓ ⊔ (c₁ ⊔ c₂)) where |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
229 field |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
230 iproduct : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → Hom A q p |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
231 pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( iproduct qi ) ] ≈ (qi i) ] |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
232 ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ iproduct ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
233 ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
234 → ( ∀ (i : I ) → A [ qi i ≈ qi' i ] ) → A [ iproduct qi ≈ iproduct qi' ] |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
235 -- another form of uniquness |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
236 ip-uniqueness1 : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ( product' : Hom A q p ) |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
237 → ( ∀ { i : I } → A [ A [ ( pi i ) o product' ] ≈ (qi i) ] ) |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
238 → A [ product' ≈ iproduct qi ] |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
239 ip-uniqueness1 {a} qi product' eq = let open ≈-Reasoning (A) in begin |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
240 product' |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
241 ≈↑⟨ ip-uniqueness ⟩ |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
242 iproduct (λ i₁ → A [ pi i₁ o product' ]) |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
243 ≈⟨ ip-cong ( λ i → begin |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
244 pi i o product' |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
245 ≈⟨ eq {i} ⟩ |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
246 qi i |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
247 ∎ ) ⟩ |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
248 iproduct qi |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
249 ∎ |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
250 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
251 |
260 | 252 -- Pullback |
253 -- f | |
300 | 254 -- a ------→ c |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
255 -- ^ ^ |
260 | 256 -- π1 | |g |
257 -- | | | |
300 | 258 -- ab ------→ b |
260 | 259 -- ^ π2 |
260 -- | | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
261 -- d |
260 | 262 -- |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
263 record Pullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a b c ab : Obj A) |
260 | 264 ( f : Hom A a c ) ( g : Hom A b c ) |
265 ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) | |
266 : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | |
267 field | |
268 commute : A [ A [ f o π1 ] ≈ A [ g o π2 ] ] | |
269 p : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d ab | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
270 π1p=π1 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
271 → A [ A [ π1 o p eq ] ≈ π1' ] |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
272 π2p=π2 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
273 → A [ A [ π2 o p eq ] ≈ π2' ] |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
274 uniqueness : { d : Obj A } → ( p' : Hom A d ab ) → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } |
260 | 275 → { π1p=π1' : A [ A [ π1 o p' ] ≈ π1' ] } |
276 → { π2p=π2' : A [ A [ π2 o p' ] ≈ π2' ] } | |
277 → A [ p eq ≈ p' ] | |
278 axb : Obj A | |
279 axb = ab | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
280 pi1 : Hom A ab a |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
281 pi1 = π1 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
282 pi2 : Hom A ab b |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
283 pi2 = π2 |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
284 |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
285 -- |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
286 -- Limit |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
287 -- |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
288 ----- |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
289 |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
290 -- Constancy Functor |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
291 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
292 K : { c₁' c₂' ℓ' : Level} (A : Category c₁' c₂' ℓ') { c₁'' c₂'' ℓ'' : Level} ( I : Category c₁'' c₂'' ℓ'' ) |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
293 → ( a : Obj A ) → Functor I A |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
294 K A I a = record { |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
295 FObj = λ i → a ; |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
296 FMap = λ f → id1 A a ; |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
297 isFunctor = let open ≈-Reasoning (A) in record { |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
298 ≈-cong = λ f=g → refl-hom |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
299 ; identity = refl-hom |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
300 ; distr = sym idL |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
301 } |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
302 } |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
303 |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
304 |
487 | 305 record IsLimit { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) |
306 (a0 : Obj A ) (t0 : NTrans I A ( K A I a0 ) Γ ) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where | |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
307 field |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
308 limit : ( a : Obj A ) → ( t : NTrans I A ( K A I a ) Γ ) → Hom A a a0 |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
309 t0f=t : { a : Obj A } → { t : NTrans I A ( K A I a ) Γ } → ∀ { i : Obj I } → |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
310 A [ A [ TMap t0 i o limit a t ] ≈ TMap t i ] |
440 | 311 limit-uniqueness : { a : Obj A } → { t : NTrans I A ( K A I a ) Γ } → ( f : Hom A a a0 ) → ( ∀ { i : Obj I } → |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
312 A [ A [ TMap t0 i o f ] ≈ TMap t i ] ) → A [ limit a t ≈ f ] |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
313 |
487 | 314 record Limit { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) |
315 : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where | |
316 field | |
317 a0 : Obj A | |
318 t0 : NTrans I A ( K A I a0 ) Γ | |
319 isLimit : IsLimit A I Γ a0 t0 | |
320 | |
321 LimitNat : { c₁' c₂' ℓ' : Level} (B : Category c₁' c₂' ℓ') { c₁ c₂ ℓ : Level} ( I : Category c₁ c₂ ℓ ) { c₁'' c₂'' ℓ'' : Level} | |
322 ( C : Category c₁'' c₂'' ℓ'' ) | |
323 ( Γ : Functor I B ) | |
324 ( lim : Obj B ) ( tb : NTrans I B ( K B I lim ) Γ ) → | |
325 ( U : Functor B C) → NTrans I C ( K C I (FObj U lim) ) (U ○ Γ) | |
326 LimitNat B I C Γ lim tb U = record { | |
327 TMap = TMap (Functor*Nat I C U tb) ; | |
328 isNTrans = record { commute = λ {a} {b} {f} → let open ≈-Reasoning (C) in begin | |
329 FMap (U ○ Γ) f o TMap (Functor*Nat I C U tb) a | |
330 ≈⟨ nat ( Functor*Nat I C U tb ) ⟩ | |
331 TMap (Functor*Nat I C U tb) b o FMap (U ○ K B I lim) f | |
332 ≈⟨ cdr (IsFunctor.identity (isFunctor U) ) ⟩ | |
333 TMap (Functor*Nat I C U tb) b o FMap (K C I (FObj U lim)) f | |
334 ∎ | |
335 } } | |
336 | |
337 open Limit | |
338 record LimitPreserve { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) | |
339 { c₁'' c₂'' ℓ'' : Level} ( C : Category c₁'' c₂'' ℓ'' ) | |
340 (G : Functor A C) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁'' ⊔ c₂'' ⊔ ℓ'' )) where | |
341 field | |
342 preserve : ( Γ : Functor I A ) → ( limita : Limit A I Γ ) → | |
343 IsLimit C I (G ○ Γ) (FObj G (a0 limita ) ) (LimitNat A I C Γ (a0 limita ) (t0 limita) G ) | |
344 plimit : ( Γ : Functor I A ) → ( limita : Limit A I Γ ) → Limit C I (G ○ Γ ) | |
345 plimit Γ limita = record { a0 = (FObj G (a0 limita )) | |
346 ; t0 = LimitNat A I C Γ (a0 limita ) (t0 limita) G | |
347 ; isLimit = preserve Γ limita } | |
348 | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
349 record CreateLimit { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) |
440 | 350 : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where |
351 field | |
487 | 352 climit : ( Γ : Functor I A ) -> Limit A I Γ |
440 | 353 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
354 record Complete { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) |
440 | 355 : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where |
356 field | |
487 | 357 climit : ( Γ : Functor I A ) -> Limit A I Γ |
358 alimit : ( Γ : Functor I A ) (a0 : Obj A ) ( t0 : NTrans I A ( K A I a0 ) Γ ) -> IsLimit A I Γ a0 t0 | |
440 | 359 |
360 product : (a b : Obj A) -> Obj A | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
361 π1 : (a b : Obj A) -> Hom A (product a b ) a |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
362 π2 : (a b : Obj A) -> Hom A (product a b ) b |
440 | 363 isProduct : (a b : Obj A) -> Product A a b (product a b) (π1 a b ) (π2 a b) |
364 | |
365 equalizer-p : {a b : Obj A} (f g : Hom A a b) -> Obj A | |
366 equalizer-e : {a b : Obj A} (f g : Hom A a b) -> Hom A (equalizer-p f g) a | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
367 isEqualizer : {a b : Obj A} (f g : Hom A a b) -> IsEqualizer A (equalizer-e f g) f g |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
368 open Limit |
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
369 limit-c : ( Γ : Functor I A ) -> Obj A |
487 | 370 limit-c Γ = a0 ( climit Γ) |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
371 limit-u : ( Γ : Functor I A ) -> NTrans I A ( K A I (limit-c Γ )) Γ |
487 | 372 limit-u Γ = t0 ( climit Γ) |