annotate src/freyd2.agda @ 1111:73c72679421c

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 09 Oct 2023 17:00:17 +0900
parents 45de2b31bf02
children 0e750446e463
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
1110
45de2b31bf02 add original library and fix for safe mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1107
diff changeset
1 {-# OPTIONS --cubical-compatible --safe #-}
45de2b31bf02 add original library and fix for safe mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1107
diff changeset
2
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 open import Category -- https://github.com/konn/category-agda
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 open import Level
611
b1b5c6b4c570 natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
5 open import Category.Sets renaming ( _o_ to _*_ )
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
6 open import Relation.Binary.Core
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
7 open import Relation.Binary.PropositionalEquality hiding ( [_] ; sym ; resp )
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
9 module freyd2 (
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
10 ≡←≈ : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y )
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 where
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13 open import HomReasoning
1110
45de2b31bf02 add original library and fix for safe mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1107
diff changeset
14 open import Definitions
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 open import Function
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 ----------
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 --
693
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
19 -- A is locally small complete and K{*}↓U has preinitial full subcategory, U is an adjoint functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
20 --
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 -- a : Obj A
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 -- U : A → Sets
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 -- U ⋍ Hom (a,-)
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 --
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25
781
340708e8d54f fix for 2.5.4.2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 695
diff changeset
26
693
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
27 -- A is localy small
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28
949
ac53803b3b2a reorganization for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 781
diff changeset
29 import Axiom.Extensionality.Propositional
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
1034
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 949
diff changeset
31 -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33 ----
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 --
617
34540494fdcf initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
35 -- Hom ( a, - ) is Object mapping in Yoneda Functor
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36 --
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
37 ----
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39 open NTrans
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40 open Functor
498
c981a2f0642f UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 497
diff changeset
41 open Limit
c981a2f0642f UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 497
diff changeset
42 open IsLimit
c981a2f0642f UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 497
diff changeset
43 open import Category.Cat
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
44
609
d686d7ae38e0 on goging
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 608
diff changeset
45 open Representable
502
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
46
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
47 _↓_ : { c₁ c₂ ℓ : Level} { c₁' c₂' ℓ' : Level} { A : Category c₁ c₂ ℓ } { B : Category c₁' c₂' ℓ' }
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
48 → ( F G : Functor A B )
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
49 → Category (c₂' ⊔ c₁) (ℓ' ⊔ c₂) ℓ
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
50 _↓_ { c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} { A } { B } F G = CommaCategory
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
51 where open import Comma1 F G
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
52
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
53 open Complete
695
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 693
diff changeset
54 open HasInitialObject
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
55 open import Comma1
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
56 open CommaObj
609
d686d7ae38e0 on goging
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 608
diff changeset
57 open LimitPreserve
608
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 502
diff changeset
58
609
d686d7ae38e0 on goging
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 608
diff changeset
59 -- Representable Functor U preserve limit , so K{*}↓U is complete
610
3fb4d834c349 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
60 --
616
7011165c118e on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
61 -- Yoneda A b = λ a → Hom A a b : Functor A Sets
617
34540494fdcf initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
62 -- : Functor Sets A
610
3fb4d834c349 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
63
635
f7cc0ec00e05 introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 634
diff changeset
64 YonedaFpreserveLimit0 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ)
612
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
65 (b : Obj A )
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
66 (Γ : Functor I (Category.op A)) (limita : Limit I (Category.op A) Γ) →
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
67 IsLimit I Sets (Yoneda A (≡←≈ A) b ○ Γ) (FObj (Yoneda A (≡←≈ A) b) (a0 limita)) (LimitNat I (Category.op A) Sets Γ (a0 limita) (t0 limita) (Yoneda A (≡←≈ A) b))
635
f7cc0ec00e05 introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 634
diff changeset
68 YonedaFpreserveLimit0 {c₁} {c₂} {ℓ} A I b Γ lim = record {
611
b1b5c6b4c570 natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
69 limit = λ a t → ψ a t
b1b5c6b4c570 natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
70 ; t0f=t = λ {a t i} → t0f=t0 a t i
614
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
71 ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t
610
3fb4d834c349 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
72 } where
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
73 opA = Category.op A
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
74 hat0 : NTrans I Sets (K I Sets (FObj (Yoneda A (≡←≈ A) b) (a0 lim))) (Yoneda A (≡←≈ A) b ○ Γ)
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
75 hat0 = LimitNat I opA Sets Γ (a0 lim) (t0 lim) (Yoneda A (≡←≈ A) b)
611
b1b5c6b4c570 natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
76 haa0 : Obj Sets
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
77 haa0 = FObj (Yoneda A (≡←≈ A) b) (a0 lim)
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
78 _*_ : {a b c : Obj (Sets {c₁} ) } → (b → c) → (a → b) → a → c
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
79 _*_ f g = λ x → f (g x)
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
80 ta : (a : Obj Sets) ( x : a ) ( t : NTrans I Sets (K I Sets a) (Yoneda A (≡←≈ A) b ○ Γ)) → NTrans I opA (K I opA b ) Γ
611
b1b5c6b4c570 natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
81 ta a x t = record { TMap = λ i → (TMap t i ) x ; isNTrans = record { commute = commute1 } } where
b1b5c6b4c570 natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
82 commute1 : {a₁ b₁ : Obj I} {f : Hom I a₁ b₁} →
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
83 opA [ opA [ FMap Γ f o TMap t a₁ x ] ≈ opA [ TMap t b₁ x o FMap (K I opA b) f ] ]
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
84 commute1 {a₁} {b₁} {f} = let open ≈-Reasoning opA in begin
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
85 opA [ FMap Γ f o TMap t a₁ x ] ≈⟨ ≈←≡ (IsNTrans.commute (isNTrans t) x ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
86 (Sets [ TMap t b₁ o id1 Sets a ]) x ≈⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
87 TMap t b₁ x ≈⟨ sym idR ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
88 opA [ TMap t b₁ x o id1 opA b ] ∎
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
89 ψ : (X : Obj Sets) ( t : NTrans I Sets (K I Sets X) (Yoneda A (≡←≈ A) b ○ Γ))
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
90 → Hom Sets X (FObj (Yoneda A (≡←≈ A) b) (a0 lim))
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
91 ψ X t x = FMap (Yoneda A (≡←≈ A) b) (limit (isLimit lim) b (ta X x t )) (id1 A b )
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
92 t0f=t0 : (a : Obj Sets ) ( t : NTrans I Sets (K I Sets a) (Yoneda A (≡←≈ A) b ○ Γ)) (i : Obj I)
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
93 → Sets [ Sets [ TMap (LimitNat I opA Sets Γ (a0 lim) (t0 lim) (Yoneda A (≡←≈ A) b)) i o ψ a t ] ≈ TMap t i ]
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
94 t0f=t0 a t i = let open ≈-Reasoning opA in ( λ x → (≡←≈ A) ( begin
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
95 ( Sets [ TMap (LimitNat I opA Sets Γ (a0 lim) (t0 lim) (Yoneda A (≡←≈ A) b)) i o ψ a t ] ) x
612
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
96 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
97 FMap (Yoneda A (≡←≈ A) b) ( TMap (t0 lim) i) (FMap (Yoneda A (≡←≈ A) b) (limit (isLimit lim) b (ta a x t )) (id1 A b ))
615
a45c32ceca97 initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
98 ≈⟨⟩ -- FMap (Hom A b ) f g = A [ f o g ]
613
afddfebea797 t0f=t0 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
99 TMap (t0 lim) i o (limit (isLimit lim) b (ta a x t ) o id1 A b )
afddfebea797 t0f=t0 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
100 ≈⟨ cdr idR ⟩
afddfebea797 t0f=t0 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
101 TMap (t0 lim) i o limit (isLimit lim) b (ta a x t )
afddfebea797 t0f=t0 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
102 ≈⟨ t0f=t (isLimit lim) ⟩
afddfebea797 t0f=t0 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
103 TMap (ta a x t) i
afddfebea797 t0f=t0 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
104 ≈⟨⟩
612
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
105 TMap t i x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
106 ∎ ))
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
107 limit-uniqueness0 : {a : Obj Sets} {t : NTrans I Sets (K I Sets a) (Yoneda A (≡←≈ A) b ○ Γ)} {f : Hom Sets a (FObj (Yoneda A (≡←≈ A) b) (a0 lim))} →
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
108 ({i : Obj I} → Sets [ Sets [ TMap (LimitNat I opA Sets Γ (a0 lim) (t0 lim) (Yoneda A (≡←≈ A) b)) i o f ] ≈ TMap t i ]) →
614
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
109 Sets [ ψ a t ≈ f ]
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
110 limit-uniqueness0 {a} {t} {f} t0f=t = let open ≈-Reasoning opA in ( λ x → (≡←≈ A) ( begin
614
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
111 ψ a t x
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
112 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
113 FMap (Yoneda A (≡←≈ A) b) (limit (isLimit lim) b (ta a x t )) (id1 A b )
614
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
114 ≈⟨⟩
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
115 limit (isLimit lim) b (ta a x t ) o id1 A b
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
116 ≈⟨ idR ⟩
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
117 limit (isLimit lim) b (ta a x t )
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
118 -- ≈⟨ limit-uniqueness (isLimit lim) ( λ {i} → ≈←≡ ( cong ( λ g → g x )( t0f=t {i} ))) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
119 ≈⟨ limit-uniqueness (isLimit lim) ( λ {i} → ≈←≡ ( cong ( λ g → g x )( ? ))) ⟩
614
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
120 f x
e6be03d94284 Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
121 ∎ ))
610
3fb4d834c349 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
122
609
d686d7ae38e0 on goging
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 608
diff changeset
123
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
124 YonedaFpreserveLimit : {c₁ c₂ ℓ : Level} (I : Category c₁ c₂ ℓ) (A : Category c₁ c₂ ℓ)
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
125 (b : Obj A ) → LimitPreserve I (Category.op A) Sets (Yoneda A (≡←≈ A) b)
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
126 YonedaFpreserveLimit I opA b = record {
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
127 preserve = λ Γ lim → YonedaFpreserveLimit0 opA I b Γ lim
610
3fb4d834c349 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
128 }
609
d686d7ae38e0 on goging
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 608
diff changeset
129
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
130
608
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 502
diff changeset
131 -- K{*}↓U has preinitial full subcategory if U is representable
609
d686d7ae38e0 on goging
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 608
diff changeset
132 -- if U is representable, K{*}↓U has initial Object ( so it has preinitial full subcategory )
608
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 502
diff changeset
133
617
34540494fdcf initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
134 open CommaHom
34540494fdcf initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
135
627
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
136 data * {c : Level} : Set c where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
137 OneObj : *
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
138
609
d686d7ae38e0 on goging
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 608
diff changeset
139 KUhasInitialObj : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
608
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 502
diff changeset
140 (a : Obj A )
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
141 → HasInitialObject ( K (Category.op A) Sets * ↓ (Yoneda A (≡←≈ A) a) ) ( record { obj = a ; hom = λ x → id1 A a } )
621
19f31d22e790 add desciptive lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
142 KUhasInitialObj {c₁} {c₂} {ℓ} A a = record {
615
a45c32ceca97 initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
143 initial = λ b → initial0 b
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
144 ; uniqueness = λ f → unique f
615
a45c32ceca97 initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
145 } where
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
146 opA = Category.op A
621
19f31d22e790 add desciptive lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
147 commaCat : Category (c₂ ⊔ c₁) c₂ ℓ
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
148 commaCat = K opA Sets * ↓ Yoneda A (≡←≈ A) a
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
149 initObj : Obj (K opA Sets * ↓ Yoneda A (≡←≈ A) a)
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
150 initObj = record { obj = a ; hom = λ x → id1 A a }
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
151 comm2 : (b : Obj commaCat) ( x : * ) → ( Sets [ FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) o (λ x₁ → id1 A a) ] ) x ≡ hom b x
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
152 comm2 b OneObj = let open ≈-Reasoning opA in (≡←≈ A) ( begin
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
153 ( Sets [ FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) o (λ x₁ → id1 A a) ] ) OneObj
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
154 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
155 FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) (id1 A a)
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
156 ≈⟨⟩
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
157 hom b OneObj o id1 A a
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
158 ≈⟨ idR ⟩
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
159 hom b OneObj
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
160 ∎ )
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
161 comm1 : (b : Obj commaCat) → Sets [ Sets [ FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) o hom initObj ] ≈ Sets [ hom b o FMap (K opA Sets *) (hom b OneObj) ] ]
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
162 comm1 b = let open ≈-Reasoning Sets in begin
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
163 FMap (Yoneda A (≡←≈ A) a) (hom b OneObj) o ( λ x → id1 A a )
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
164 ≈⟨ ( λ x → comm2 b x ) ⟩
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
165 hom b
615
a45c32ceca97 initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
166 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
167 hom b o FMap (K opA Sets *) (hom b OneObj)
615
a45c32ceca97 initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
168
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
169 initial0 : (b : Obj commaCat) →
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
170 Hom commaCat initObj b
615
a45c32ceca97 initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
171 initial0 b = record {
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
172 arrow = hom b OneObj
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
173 ; comm = comm1 b }
625
d73fbed639a9 initialObject done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
174 -- what is comm f ?
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
175 comm-f : (b : Obj (K opA Sets * ↓ (Yoneda A (≡←≈ A) a))) (f : Hom (K opA Sets * ↓ Yoneda A (≡←≈ A) a) initObj b)
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
176 → Sets [ Sets [ FMap (Yoneda A (≡←≈ A) a) (arrow f) o ( λ x → id1 A a ) ]
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
177 ≈ Sets [ hom b o FMap (K opA Sets *) (arrow f) ] ]
625
d73fbed639a9 initialObject done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
178 comm-f b f = comm f
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
179 unique : {b : Obj (K opA Sets * ↓ Yoneda A (≡←≈ A) a)} (f : Hom (K opA Sets * ↓ Yoneda A (≡←≈ A) a) initObj b)
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
180 → (K opA Sets * ↓ Yoneda A (≡←≈ A) a) [ f ≈ initial0 b ]
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
181 unique {b} f = let open ≈-Reasoning opA in begin
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
182 arrow f
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
183 ≈↑⟨ idR ⟩
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
184 arrow f o id1 A a
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
185 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
186 ( Sets [ FMap (Yoneda A (≡←≈ A) a) (arrow f) o id1 Sets (FObj (Yoneda A (≡←≈ A) a) a) ] ) (id1 A a)
625
d73fbed639a9 initialObject done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
187 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
188 ( Sets [ FMap (Yoneda A (≡←≈ A) a) (arrow f) o ( λ x → id1 A a ) ] ) OneObj
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
189 ≈⟨ ≈←≡ ( comm f OneObj ) ⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
190 ( Sets [ hom b o FMap (K opA Sets *) (arrow f) ] ) OneObj
624
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
191 ≈⟨⟩
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
192 hom b OneObj
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
193
9b9bc1e076f3 introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
194
615
a45c32ceca97 initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
195
a45c32ceca97 initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
196
644
8e35703ef116 representability theorem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
197 -- A is complete and K{*}↓U has preinitial full subcategory and U preserve limit then U is representable
615
a45c32ceca97 initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
198
638
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
199 -- if U preserve limit, K{*}↓U has initial object from freyd.agda
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
200
626
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
201 ≡-cong = Relation.Binary.PropositionalEquality.cong
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
202
638
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
203
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
204 ub : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b )
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
205 → Hom Sets (FObj (K A Sets *) b) (FObj U b)
638
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
206 ub A U b x OneObj = x
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
207 ob : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b )
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
208 → Obj ( K A Sets * ↓ U)
638
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
209 ob A U b x = record { obj = b ; hom = ub A U b x}
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
210 fArrow : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) ) {a b : Obj A} (f : Hom A a b) (x : FObj U a )
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
211 → Hom ( K A Sets * ↓ U) ( ob A U a x ) (ob A U b (FMap U f x) )
638
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
212 fArrow A U {a} {b} f x = record { arrow = f ; comm = fArrowComm a b f x }
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
213 where
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
214 fArrowComm1 : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) → (y : * ) → FMap U f ( ub A U a x y ) ≡ ub A U b (FMap U f x) y
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
215 fArrowComm1 a b f x OneObj = refl
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
216 fArrowComm : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) →
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
217 Sets [ Sets [ FMap U f o hom (ob A U a x) ] ≈ Sets [ hom (ob A U b (FMap U f x)) o FMap (K A Sets *) f ] ]
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
218 fArrowComm a b f x = ( λ y → begin
638
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
219 ( Sets [ FMap U f o hom (ob A U a x) ] ) y
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
220 ≡⟨⟩
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
221 FMap U f ( hom (ob A U a x) y )
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
222 ≡⟨⟩
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
223 FMap U f ( ub A U a x y )
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
224 ≡⟨ fArrowComm1 a b f x y ⟩
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
225 ub A U b (FMap U f x) y
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
226 ≡⟨⟩
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
227 hom (ob A U b (FMap U f x)) y
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
228 ∎ ) where
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
229 open import Relation.Binary.PropositionalEquality
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
230 open ≡-Reasoning
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
231
635
f7cc0ec00e05 introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 634
diff changeset
232
f7cc0ec00e05 introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 634
diff changeset
233 -- if K{*}↓U has initial Obj, U is representable
f7cc0ec00e05 introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 634
diff changeset
234
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
235 UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
236 (U : Functor (Category.op A) (Sets {c₂}) )
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
237 ( i : Obj ( K (Category.op A) Sets * ↓ U) )
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
238 (In : HasInitialObject ( K (Category.op A) Sets * ↓ U) i )
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
239 → Representable A (≡←≈ A) U (obj i)
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
240 UisRepresentable A U i In = record {
627
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
241 repr→ = record { TMap = tmap1 ; isNTrans = record { commute = comm1 } }
626
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
242 ; repr← = record { TMap = tmap2 ; isNTrans = record { commute = comm2 } }
638
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
243 ; reprId→ = iso→
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
244 ; reprId← = iso←
626
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
245 } where
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
246 opA = Category.op A
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
247 comm11 : (a b : Obj opA) (f : Hom opA a b) (y : FObj U a ) →
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
248 ( Sets [ FMap (Yoneda A (≡←≈ A) (obj i)) f o ( λ x → arrow (initial In (ob opA U a x))) ] ) y
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
249 ≡ (Sets [ ( λ x → arrow (initial In (ob opA U b x))) o FMap U f ] ) y
638
a07b95e92933 creating nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
250 comm11 a b f y = begin
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
251 ( Sets [ FMap (Yoneda A (≡←≈ A) (obj i)) f o ( λ x → arrow (initial In (ob opA U a x))) ] ) y
631
7be3eb96310c introduce fArrow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 630
diff changeset
252 ≡⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
253 opA [ f o arrow (initial In (ob opA U a y)) ]
631
7be3eb96310c introduce fArrow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 630
diff changeset
254 ≡⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
255 opA [ arrow ( fArrow opA U f y ) o arrow (initial In (ob opA U a y)) ]
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
256 ≡⟨ (≡←≈ A) ( uniqueness In {ob opA U b (FMap U f y) } (( K opA Sets * ↓ U) [ fArrow opA U f y o initial In (ob opA U a y)] ) ) ⟩
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
257 arrow (initial In (ob opA U b (FMap U f y) ))
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
258 ≡⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
259 (Sets [ ( λ x → arrow (initial In (ob opA U b x))) o FMap U f ] ) y
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
260 ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
261 open import Relation.Binary.PropositionalEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
262 open ≡-Reasoning
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
263 tmap1 : (b : Obj A) → Hom Sets (FObj U b) (FObj (Yoneda A (≡←≈ A) (obj i)) b)
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
264 tmap1 b x = arrow ( initial In (ob opA U b x ) )
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
265 comm1 : {a b : Obj opA} {f : Hom opA a b} → Sets [ Sets [ FMap (Yoneda A (≡←≈ A) (obj i)) f o tmap1 a ] ≈ Sets [ tmap1 b o FMap U f ] ]
626
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
266 comm1 {a} {b} {f} = let open ≈-Reasoning Sets in begin
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
267 FMap (Yoneda A (≡←≈ A) (obj i)) f o tmap1 a
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
268 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
269 FMap (Yoneda A (≡←≈ A) (obj i)) f o ( λ x → arrow (initial In ( ob opA U a x )))
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
270 ≈⟨ ( λ y → comm11 a b f y ) ⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
271 ( λ x → arrow (initial In (ob opA U b x))) o FMap U f
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
272 ≈⟨⟩
626
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
273 tmap1 b o FMap U f
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
274
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
275 comm21 : (a b : Obj opA) (f : Hom opA a b) ( y : Hom opA (obj i) a ) →
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
276 (Sets [ FMap U f o (λ x → FMap U x (hom i OneObj))] ) y ≡
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
277 (Sets [ ( λ x → (FMap U x ) (hom i OneObj)) o (λ x → opA [ f o x ] ) ] ) y
626
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
278 comm21 a b f y = begin
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
279 FMap U f ( FMap U y (hom i OneObj))
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
280 ≡⟨ sym ( IsFunctor.distr (isFunctor U ) (hom i OneObj) ) ⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
281 (FMap U (opA [ f o y ] ) ) (hom i OneObj)
626
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
282 ∎ where
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
283 open import Relation.Binary.PropositionalEquality
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
284 open ≡-Reasoning
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
285 tmap2 : (b : Obj A) → Hom Sets (FObj (Yoneda A (≡←≈ A) (obj i)) b) (FObj U b)
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
286 tmap2 b x = ( FMap U x ) ( hom i OneObj )
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
287 comm2 : {a b : Obj opA} {f : Hom opA a b} → Sets [ Sets [ FMap U f o tmap2 a ] ≈
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
288 Sets [ tmap2 b o FMap (Yoneda A (≡←≈ A) (obj i)) f ] ]
626
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
289 comm2 {a} {b} {f} = let open ≈-Reasoning Sets in begin
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
290 FMap U f o tmap2 a
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
291 ≈⟨⟩
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
292 FMap U f o ( λ x → ( FMap U x ) ( hom i OneObj ) )
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
293 ≈⟨ ( λ y → comm21 a b f y ) ⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
294 ( λ x → ( FMap U x ) ( hom i OneObj ) ) o ( λ x → opA [ f o x ] )
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
295 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
296 ( λ x → ( FMap U x ) ( hom i OneObj ) ) o FMap (Yoneda A (≡←≈ A) (obj i)) f
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
297 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
298 tmap2 b o FMap (Yoneda A (≡←≈ A) (obj i)) f
637
946ea019a2e7 if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 636
diff changeset
299
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
300 iso0 : ( x : Obj opA) ( y : Hom opA (obj i ) x ) ( z : * )
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
301 → ( Sets [ FMap U y o hom i ] ) z ≡ ( Sets [ ub opA U x (FMap U y (hom i OneObj)) o FMap (K opA Sets *) y ] ) z
637
946ea019a2e7 if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 636
diff changeset
302 iso0 x y OneObj = refl
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
303 iso→ : {x : Obj opA} → Sets [ Sets [ tmap1 x o tmap2 x ] ≈ id1 Sets (FObj (Yoneda A (≡←≈ A) (obj i)) x) ]
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
304 iso→ {x} = let open ≈-Reasoning opA in ( λ ( y : Hom opA (obj i ) x ) → (≡←≈ A) ( begin
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
305 ( Sets [ tmap1 x o tmap2 x ] ) y
626
c5abbd39e6eb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
306 ≈⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
307 arrow ( initial In (ob opA U x (( FMap U y ) ( hom i OneObj ) )))
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
308 ≈↑⟨ uniqueness In (record { arrow = y ; comm = ( λ (z : * ) → iso0 x y z ) } ) ⟩
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
309 y
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
310 ∎ ))
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
311 iso← : {x : Obj A} → Sets [ Sets [ tmap2 x o tmap1 x ] ≈ id1 Sets (FObj U x) ]
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
312 iso← {x} = ( λ (y : FObj U x ) → ( begin
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
313 ( Sets [ tmap2 x o tmap1 x ] ) y
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
314 ≡⟨⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
315 ( FMap U ( arrow ( initial In (ob opA U x y ) )) ) ( hom i OneObj )
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
316 ≡⟨ comm ( initial In (ob opA U x y ) ) OneObj ⟩
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
317 hom (ob opA U x y) OneObj
637
946ea019a2e7 if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 636
diff changeset
318 ≡⟨⟩
636
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
319 y
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
320 ∎ ) ) where
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
321 open import Relation.Binary.PropositionalEquality
3e663c7f88c4 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 635
diff changeset
322 open ≡-Reasoning
645
5f26af3f1c00 start adjoint
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 644
diff changeset
323
647
4d261d04b176 functorF and η
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 646
diff changeset
324 -------------
4d261d04b176 functorF and η
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 646
diff changeset
325 -- Adjoint Functor Theorem
4d261d04b176 functorF and η
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 646
diff changeset
326 --
4d261d04b176 functorF and η
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 646
diff changeset
327
648
10f2057c8bff use module
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 647
diff changeset
328 module Adjoint-Functor {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I )
10f2057c8bff use module
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 647
diff changeset
329 (U : Functor A B )
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
330 (i : (b : Obj B) → Obj ( K A B b ↓ U) )
695
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 693
diff changeset
331 (In : (b : Obj B) → HasInitialObject ( K A B b ↓ U) (i b) )
663
855e497a9c8f introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
332 where
648
10f2057c8bff use module
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 647
diff changeset
333
649
4d742e13fb7c module introdued
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
334 tmap-η : (y : Obj B) → Hom B y (FObj U (obj (i y)))
4d742e13fb7c module introdued
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
335 tmap-η y = hom (i y)
648
10f2057c8bff use module
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 647
diff changeset
336
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
337 sobj : {a : Obj B} {b : Obj A} → ( f : Hom B a (FObj U b) ) → CommaObj (K A B a) U
652
236e916760e6 rewritw solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 651
diff changeset
338 sobj {a} {b} f = record {obj = b; hom = f }
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
339 solution : {a : Obj B} {b : Obj A} → ( f : Hom B a (FObj U b) ) → CommaHom (K A B a) U (i a) (sobj f)
652
236e916760e6 rewritw solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 651
diff changeset
340 solution {a} {b} f = initial (In a) (sobj f)
647
4d261d04b176 functorF and η
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 646
diff changeset
341
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
342 ηf : (a b : Obj B) → ( f : Hom B a b ) → Obj ( K A B a ↓ U)
654
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
343 ηf a b f = sobj ( B [ tmap-η b o f ] )
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
344
653
893ae9a95ee1 solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
345 univ : {a : Obj B} {b : Obj A} → (f : Hom B a (FObj U b))
652
236e916760e6 rewritw solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 651
diff changeset
346 → B [ B [ FMap U (arrow (solution f)) o tmap-η a ] ≈ f ]
653
893ae9a95ee1 solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
347 univ {a} {b} f = let open ≈-Reasoning B in begin
893ae9a95ee1 solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
348 FMap U (arrow (solution f)) o tmap-η a
893ae9a95ee1 solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
349 ≈⟨ comm (initial (In a) (sobj f)) ⟩
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
350 hom (sobj f) o FMap (K A B a) (arrow (initial (In a) (sobj f)))
653
893ae9a95ee1 solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
351 ≈⟨ idR ⟩
893ae9a95ee1 solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
352 f
893ae9a95ee1 solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
353
652
236e916760e6 rewritw solution
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 651
diff changeset
354
654
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
355 unique : {a : Obj B} { b : Obj A } → { f : Hom B a (FObj U b) } → { g : Hom A (obj (i a)) b} →
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
356 B [ B [ FMap U g o tmap-η a ] ≈ f ] → A [ arrow (solution f) ≈ g ]
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
357 unique {a} {b} {f} {g} ugη=f = let open ≈-Reasoning A in begin
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
358 arrow (solution f)
1106
270f0ba65b88 unify yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1100
diff changeset
359 ≈↑⟨ ≈←≡ ( cong (λ k → arrow (solution k)) ( (≡←≈ B) ugη=f )) ⟩
654
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
360 arrow (solution (B [ FMap U g o tmap-η a ] ))
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
361 ≈↑⟨ uniqueness (In a) (record { arrow = g ; comm = comm1 }) ⟩
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
362 g
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
363 ∎ where
691
917e51be9bbf change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
364 comm1 : B [ B [ FMap U g o hom (i a) ] ≈ B [ B [ FMap U g o tmap-η a ] o FMap (K A B a) g ] ]
654
2872af3b32cc uniquness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 653
diff changeset
365 comm1 = let open ≈-Reasoning B in sym idR
645
5f26af3f1c00 start adjoint
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 644
diff changeset
366
690
3d41a8edbf63 fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
367 UM : UniversalMapping B A U
655
26a28b1cee6f universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 654
diff changeset
368 UM = record {
690
3d41a8edbf63 fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
369 F = λ b → obj (i b) ;
3d41a8edbf63 fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
370 η = tmap-η ;
655
26a28b1cee6f universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 654
diff changeset
371 _* = λ f → arrow (solution f) ;
26a28b1cee6f universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 654
diff changeset
372 isUniversalMapping = record {
26a28b1cee6f universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 654
diff changeset
373 universalMapping = λ {a} {b} {f} → univ f ;
26a28b1cee6f universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 654
diff changeset
374 uniquness = unique
26a28b1cee6f universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 654
diff changeset
375 }}
26a28b1cee6f universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 654
diff changeset
376
659
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
377 -- Adjoint can be built as follows (same as univeral-mapping.agda )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
378 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
379 -- F : Functor B A
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
380 -- F = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
381 -- FObj = λ b → obj (i b)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
382 -- ; FMap = λ {x} {y} (f : Hom B x y ) → arrow (solution ( B [ tmap-η y o f ] ))
645
5f26af3f1c00 start adjoint
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 644
diff changeset
383
659
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
384 -- nat-ε : NTrans A A (F ○ U) identityFunctor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
385 -- nat-ε = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
386 -- TMap = λ x → arrow ( solution (id1 B (FObj U x)))
645
5f26af3f1c00 start adjoint
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 644
diff changeset
387
659
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
388 -- nat-η : NTrans B B identityFunctor (U ○ F)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
389 -- nat-η = record { TMap = λ y → tmap-η y ; isNTrans = record { commute = comm1 } } where
645
5f26af3f1c00 start adjoint
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 644
diff changeset
390
659
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
391 -- FisLeftAdjoint : Adjunction B A U F nat-η nat-ε
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
392 -- FisLeftAdjoint = record { isAdjunction = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
393
1107
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
394 open import Data.Product renaming (_×_ to _∧_ ) hiding ( <_,_> )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
395 open import Category.Constructions.Product
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
396
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
397 module pro-ex {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( _*_ : Obj A → Obj A → Obj A )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
398 (*-iso : (a b c x : Obj A) → IsoS A (A × A) x c (x , x ) (a , b )) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
399
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
400 -- Hom A x c ≅ ( Hom A x a ) * ( Hom A x b )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
401
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
402 open IsoS
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
403
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
404 -- import Axiom.Extensionality.Propositional
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
405 -- postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m
1107
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
406
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
407 open import Category.Cat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
408
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
409 *eq : {a b : Obj (A × A) } { x y : Hom (A × A) a b } → (x≈y : (A × A) [ x ≈ y ]) → x ≡ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
410 *eq {a} {b} {x1 , x2} {y1 , y2} (eq1 , eq2) = cong₂ _,_ ( ≡←≈ A eq1 ) ( ≡←≈ A eq2 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
411
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
412 opA = Category.op A
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
413 prodFunctor : Functor (Category.op A) (Category.op (A × A))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
414 prodFunctor = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
415 FObj = λ x → x , x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
416 ; FMap = λ {x} {y} (f : Hom opA x y ) → f , f
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
417 ; isFunctor = record { identity = refl-hom , refl-hom ; distr = refl-hom , refl-hom ; ≈-cong = λ eq → eq , eq }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
418 } where open ≈-Reasoning A
1107
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
419 t00 : (a c d e : Obj opA) (f : Hom opA a c ) → Hom (A × A) (c , c) (d , e )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
420 t00 a c d e f = ≅→ (*-iso d e a c) f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
421 nat-* : {a b c : Obj A} → NTrans (Category.op A) (Sets {c₂}) (Yoneda A (≡←≈ A) c ) (Yoneda (A × A) *eq (a , b) ○ prodFunctor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
422 nat-* {a} {b} {c} = record { TMap = λ z f → ≅→ (*-iso a b c z) f ; isNTrans = record { commute = nat-comm } } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
423 nat-comm : {x y : Obj opA} {f : Hom opA x y} →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
424 Sets [ Sets [ (λ g → opA [ f o proj₁ g ] , opA [ f o proj₂ g ]) o (λ f₁ → ≅→ (*-iso a b c x) f₁) ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
425 ≈ Sets [ (λ f₁ → ≅→ (*-iso a b c y) f₁) o (λ g → opA [ f o g ]) ] ]
1111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
426 nat-comm {x} {y} {f} g = cong₂ _,_ ( ≡←≈ A ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
427 ? ≈⟨ ? ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
428 ? ∎ )) ( ≡←≈ A ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
429 ? ≈⟨ ? ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
430 ? ∎ )) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
431 open ≈-Reasoning A
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
432 -- = λ g → ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
433 -- opA [ f o proj₁ (≅→ (*-iso a b c x) g) ] , opA [ f o proj₂ (≅→ (*-iso a b c x) g) ] ≡⟨ cong₂ (λ j k → j , k ) (t01 g) ? ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
434 -- proj₁ (≅→ (*-iso a b c y) ( opA [ f o g ] )) , proj₂ (≅→ (*-iso a b c y) ( opA [ f o g ] ) ) ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
435 -- ≅→ (*-iso a b c y) ( opA [ f o g ] ) ∎ ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
436 -- open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
437 -- t01 : {c : Obj A } → (g : Hom A x c) → opA [ f o proj₁ (≅→ (*-iso a b c x) g) ] ≡ proj₁ (≅→ (*-iso a b c y) (opA [ f o g ]))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
438 -- t01 {c} g = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
439 -- A [ proj₁ (≅→ (*-iso a b c x) g) o f ] ≡⟨ ≡←≈ A ? ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
440 -- proj₁ (≅→ (*-iso a b c y) (A [ g o f ])) ∎
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1110
diff changeset
441
1107
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
442
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1106
diff changeset
443
659
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
444 -- end
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 658
diff changeset
445