Mercurial > hg > Members > kono > Proof > category
annotate cat-utility.agda @ 911:b8c5f15ee561
small graph and small category on CCC to graph
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 02 May 2020 03:40:56 +0900 |
parents | 117e5b392673 |
children |
rev | line source |
---|---|
56 | 1 module cat-utility where |
2 | |
3 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
4 | |
87 | 5 open import Category -- https://github.com/konn/category-agda |
6 open import Level | |
7 --open import Category.HomReasoning | |
8 open import HomReasoning | |
56 | 9 |
87 | 10 open Functor |
56 | 11 |
87 | 12 id1 : ∀{c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (a : Obj A ) → Hom A a a |
13 id1 A a = (Id {_} {_} {_} {A} a) | |
253 | 14 -- We cannot make A implicit |
56 | 15 |
731
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
16 record Iso {c₁ c₂ ℓ : Level} (C : Category c₁ c₂ ℓ) |
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
17 (x y : Obj C ) |
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
18 : Set ( suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁)) where |
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
19 field |
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
20 ≅→ : Hom C x y |
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
21 ≅← : Hom C y x |
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
22 iso→ : C [ C [ ≅← o ≅→ ] ≈ id1 C x ] |
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
23 iso← : C [ C [ ≅→ o ≅← ] ≈ id1 C y ] |
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
24 |
117e5b392673
Generalize Free Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
695
diff
changeset
|
25 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
26 record IsUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
87 | 27 ( U : Functor B A ) |
28 ( F : Obj A → Obj B ) | |
29 ( η : (a : Obj A) → Hom A a ( FObj U (F a) ) ) | |
30 ( _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) → Hom B (F a ) b ) | |
31 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
32 field | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
33 universalMapping : {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → |
101 | 34 A [ A [ FMap U ( f * ) o η a ] ≈ f ] |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
35 uniquness : {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → { g : Hom B (F a) b } → |
101 | 36 A [ A [ FMap U g o η a ] ≈ f ] → B [ f * ≈ g ] |
56 | 37 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
38 record UniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
689 | 39 ( U : Functor B A ) |
87 | 40 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where |
41 infixr 11 _* | |
42 field | |
690
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
43 F : Obj A → Obj B |
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
44 η : (a : Obj A) → Hom A a ( FObj U (F a) ) |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
45 _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) → Hom B (F a ) b |
87 | 46 isUniversalMapping : IsUniversalMapping A B U F η _* |
56 | 47 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
48 record coIsUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
268 | 49 ( F : Functor A B ) |
50 ( U : Obj B → Obj A ) | |
51 ( ε : (b : Obj B) → Hom B ( FObj F (U b) ) b ) | |
52 ( _*' : { b : Obj B}{ a : Obj A} → ( Hom B (FObj F a) b ) → Hom A a (U b ) ) | |
53 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
54 field | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
55 couniversalMapping : {b : Obj B} { a : Obj A } → { f : Hom B (FObj F a) b } → |
268 | 56 B [ B [ ε b o FMap F ( f *' ) ] ≈ f ] |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
57 couniquness : {b : Obj B} { a : Obj A } → { f : Hom B (FObj F a) b } → { g : Hom A a (U b) } → |
268 | 58 B [ B [ ε b o FMap F g ] ≈ f ] → A [ f *' ≈ g ] |
59 | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
60 record coUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
689 | 61 ( F : Functor A B ) |
268 | 62 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where |
63 infixr 11 _*' | |
64 field | |
690
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
65 U : Obj B → Obj A |
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
66 ε : (b : Obj B) → Hom B ( FObj F (U b) ) b |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
67 _*' : { b : Obj B}{ a : Obj A} → ( Hom B (FObj F a) b ) → Hom A a (U b ) |
268 | 68 iscoUniversalMapping : coIsUniversalMapping A B F U ε _*' |
69 | |
87 | 70 open NTrans |
71 open import Category.Cat | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
72 record IsAdjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
87 | 73 ( U : Functor B A ) |
74 ( F : Functor A B ) | |
75 ( η : NTrans A A identityFunctor ( U ○ F ) ) | |
76 ( ε : NTrans B B ( F ○ U ) identityFunctor ) | |
77 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
78 field | |
79 adjoint1 : { b : Obj B } → | |
80 A [ A [ ( FMap U ( TMap ε b )) o ( TMap η ( FObj U b )) ] ≈ id1 A (FObj U b) ] | |
81 adjoint2 : {a : Obj A} → | |
82 B [ B [ ( TMap ε ( FObj F a )) o ( FMap F ( TMap η a )) ] ≈ id1 B (FObj F a) ] | |
56 | 83 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
84 record Adjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
87 | 85 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where |
86 field | |
688
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
87 U : Functor B A |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
88 F : Functor A B |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
89 η : NTrans A A identityFunctor ( U ○ F ) |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
90 ε : NTrans B B ( F ○ U ) identityFunctor |
87 | 91 isAdjunction : IsAdjunction A B U F η ε |
202
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
92 U-functor = U |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
93 F-functor = F |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
94 Eta = η |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
95 Epsiron = ε |
56 | 96 |
97 | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
98 record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
87 | 99 ( T : Functor A A ) |
100 ( η : NTrans A A identityFunctor T ) | |
101 ( μ : NTrans A A (T ○ T) T) | |
102 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | |
103 field | |
104 assoc : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] | |
105 unity1 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] | |
106 unity2 : {a : Obj A} → A [ A [ TMap μ a o (FMap T (TMap η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] | |
56 | 107 |
688
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
108 record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
87 | 109 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where |
110 field | |
688
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
111 T : Functor A A |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
112 η : NTrans A A identityFunctor T |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
113 μ : NTrans A A (T ○ T) T |
87 | 114 isMonad : IsMonad A T η μ |
130 | 115 -- g ○ f = μ(c) T(g) f |
116 join : { a b : Obj A } → { c : Obj A } → | |
117 ( Hom A b ( FObj T c )) → ( Hom A a ( FObj T b)) → Hom A a ( FObj T c ) | |
118 join {_} {_} {c} g f = A [ TMap μ c o A [ FMap T g o f ] ] | |
119 | |
56 | 120 |
87 | 121 Functor*Nat : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') |
300 | 122 (F : Functor B C) → { G H : Functor A B } → ( n : NTrans A B G H ) → NTrans A C (F ○ G) (F ○ H) |
87 | 123 Functor*Nat A {B} C F {G} {H} n = record { |
300 | 124 TMap = λ a → FMap F (TMap n a) |
87 | 125 ; isNTrans = record { |
130 | 126 commute = commute |
87 | 127 } |
128 } where | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
129 commute : {a b : Obj A} {f : Hom A a b} |
87 | 130 → C [ C [ (FMap F ( FMap H f )) o ( FMap F (TMap n a)) ] ≈ C [ (FMap F (TMap n b )) o (FMap F (FMap G f)) ] ] |
130 | 131 commute {a} {b} {f} = let open ≈-Reasoning (C) in |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
132 begin |
87 | 133 (FMap F ( FMap H f )) o ( FMap F (TMap n a)) |
134 ≈⟨ sym (distr F) ⟩ | |
135 FMap F ( B [ (FMap H f) o TMap n a ]) | |
136 ≈⟨ IsFunctor.≈-cong (isFunctor F) ( nat n ) ⟩ | |
137 FMap F ( B [ (TMap n b ) o FMap G f ] ) | |
138 ≈⟨ distr F ⟩ | |
139 (FMap F (TMap n b )) o (FMap F (FMap G f)) | |
140 ∎ | |
56 | 141 |
87 | 142 Nat*Functor : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') |
300 | 143 { G H : Functor B C } → ( n : NTrans B C G H ) → (F : Functor A B) → NTrans A C (G ○ F) (H ○ F) |
87 | 144 Nat*Functor A {B} C {G} {H} n F = record { |
300 | 145 TMap = λ a → TMap n (FObj F a) |
87 | 146 ; isNTrans = record { |
130 | 147 commute = commute |
87 | 148 } |
149 } where | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
150 commute : {a b : Obj A} {f : Hom A a b} |
87 | 151 → C [ C [ ( FMap H (FMap F f )) o ( TMap n (FObj F a)) ] ≈ C [ (TMap n (FObj F b )) o (FMap G (FMap F f)) ] ] |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
152 commute {a} {b} {f} = IsNTrans.commute ( isNTrans n) |
56 | 153 |
87 | 154 -- T ≃ (U_R ○ F_R) |
155 -- μ = U_R ε F_R | |
156 -- nat-ε | |
157 -- nat-η -- same as η but has different types | |
84 | 158 |
688
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
159 record MResolution {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) ( B : Category c₁' c₂' ℓ' ) ( M : Monad A ) |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
160 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
161 field |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
162 UR : Functor B A |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
163 FR : Functor A B |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
164 ηR : NTrans A A identityFunctor ( UR ○ FR ) |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
165 εR : NTrans B B ( FR ○ UR ) identityFunctor |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
166 μR : NTrans A A ( (UR ○ FR) ○ ( UR ○ FR )) ( UR ○ FR ) |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
167 Adj : IsAdjunction A B UR FR ηR εR |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
168 T=UF : Monad.T M ≃ (UR ○ FR) |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
169 μ=UεF : {x : Obj A } → A [ TMap μR x ≈ FMap UR ( TMap εR ( FObj FR x ) ) ] |
300 | 170 -- ηR=η : {x : Obj A } → A [ TMap ηR x ≈ TMap η x ] -- We need T → UR FR conversion |
171 -- μR=μ : {x : Obj A } → A [ TMap μR x ≈ TMap μ x ] | |
86 | 172 |
88 | 173 |
350
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
174 -- |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
175 -- e f |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
176 -- c -------→ a ---------→ b |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
177 -- ^ . ---------→ |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
178 -- | . g |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
179 -- |k . |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
180 -- | . h |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
181 -- d |
c483374f542b
try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
312
diff
changeset
|
182 |
443 | 183 record IsEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (e : Hom A c a) (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
260 | 184 field |
185 fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] | |
186 k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c | |
187 ek=h : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → A [ A [ e o k {d} h eq ] ≈ h ] | |
188 uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → {k' : Hom A d c } → | |
189 A [ A [ e o k' ] ≈ h ] → A [ k {d} h eq ≈ k' ] | |
443 | 190 equalizer1 : Hom A c a |
191 equalizer1 = e | |
260 | 192 |
443 | 193 record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
440 | 194 field |
443 | 195 equalizer-c : Obj A |
196 equalizer : Hom A equalizer-c a | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
197 isEqualizer : IsEqualizer A equalizer f g |
440 | 198 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
199 -- |
260 | 200 -- Product |
201 -- | |
264 | 202 -- c |
203 -- f | g | |
204 -- |f×g | |
205 -- v | |
300 | 206 -- a <-------- ab ---------→ b |
264 | 207 -- π1 π2 |
260 | 208 |
209 | |
672 | 210 record IsProduct { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a b ab : Obj A) |
260 | 211 ( π1 : Hom A ab a ) |
212 ( π2 : Hom A ab b ) | |
213 : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | |
214 field | |
215 _×_ : {c : Obj A} ( f : Hom A c a ) → ( g : Hom A c b ) → Hom A c ab | |
216 π1fxg=f : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π1 o ( f × g ) ] ≈ f ] | |
217 π2fxg=g : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π2 o ( f × g ) ] ≈ g ] | |
218 uniqueness : {c : Obj A} { h : Hom A c ab } → A [ ( A [ π1 o h ] ) × ( A [ π2 o h ] ) ≈ h ] | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
219 ×-cong : {c : Obj A} { f f' : Hom A c a } → { g g' : Hom A c b } → A [ f ≈ f' ] → A [ g ≈ g' ] → A [ f × g ≈ f' × g' ] |
440 | 220 |
681
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
221 record Product { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( a b : Obj A ) |
440 | 222 : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
223 field | |
681
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
224 product : Obj A |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
225 π1 : Hom A product a |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
226 π2 : Hom A product b |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
227 isProduct : IsProduct A a b product π1 π2 |
260 | 228 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
229 ----- |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
230 -- |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
231 -- product on arbitrary index |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
232 -- |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
233 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
234 record IsIProduct { c c₁ c₂ ℓ : Level} ( I : Set c) ( A : Category c₁ c₂ ℓ ) |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
235 ( p : Obj A ) -- product |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
236 ( ai : I → Obj A ) -- families |
508
3ce21b2a671a
IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
495
diff
changeset
|
237 ( pi : (i : I ) → Hom A p ( ai i ) ) -- projections |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
238 : Set (c ⊔ ℓ ⊔ (c₁ ⊔ c₂)) where |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
239 field |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
240 iproduct : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → Hom A q p |
676 | 241 pif=q : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } |
242 → ∀ { i : I } → A [ A [ ( pi i ) o ( iproduct qi ) ] ≈ (qi i) ] | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
243 ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ iproduct ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
244 ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
245 → ( ∀ (i : I ) → A [ qi i ≈ qi' i ] ) → A [ iproduct qi ≈ iproduct qi' ] |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
246 -- another form of uniquness |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
247 ip-uniqueness1 : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ( product' : Hom A q p ) |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
248 → ( ∀ { i : I } → A [ A [ ( pi i ) o product' ] ≈ (qi i) ] ) |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
249 → A [ product' ≈ iproduct qi ] |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
250 ip-uniqueness1 {a} qi product' eq = let open ≈-Reasoning (A) in begin |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
251 product' |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
252 ≈↑⟨ ip-uniqueness ⟩ |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
253 iproduct (λ i₁ → A [ pi i₁ o product' ]) |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
254 ≈⟨ ip-cong ( λ i → begin |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
255 pi i o product' |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
256 ≈⟨ eq {i} ⟩ |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
257 qi i |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
258 ∎ ) ⟩ |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
259 iproduct qi |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
260 ∎ |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
261 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
262 record IProduct { c c₁ c₂ ℓ : Level} ( I : Set c) ( A : Category c₁ c₂ ℓ ) (ai : I → Obj A) : Set (c ⊔ ℓ ⊔ (c₁ ⊔ c₂)) where |
508
3ce21b2a671a
IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
495
diff
changeset
|
263 field |
3ce21b2a671a
IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
495
diff
changeset
|
264 iprod : Obj A |
3ce21b2a671a
IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
495
diff
changeset
|
265 pi : (i : I ) → Hom A iprod ( ai i ) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
266 isIProduct : IsIProduct I A iprod ai pi |
508
3ce21b2a671a
IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
495
diff
changeset
|
267 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
268 |
260 | 269 -- Pullback |
270 -- f | |
300 | 271 -- a ------→ c |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
272 -- ^ ^ |
260 | 273 -- π1 | |g |
274 -- | | | |
300 | 275 -- ab ------→ b |
260 | 276 -- ^ π2 |
277 -- | | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
278 -- d |
260 | 279 -- |
681
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
280 record IsPullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c ab : Obj A} |
260 | 281 ( f : Hom A a c ) ( g : Hom A b c ) |
282 ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) | |
283 : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | |
284 field | |
285 commute : A [ A [ f o π1 ] ≈ A [ g o π2 ] ] | |
681
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
286 pullback : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d ab |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
287 π1p=π1 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } |
681
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
288 → A [ A [ π1 o pullback eq ] ≈ π1' ] |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
289 π2p=π2 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } |
681
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
290 → A [ A [ π2 o pullback eq ] ≈ π2' ] |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
291 uniqueness : { d : Obj A } → ( p' : Hom A d ab ) → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } |
260 | 292 → { π1p=π1' : A [ A [ π1 o p' ] ≈ π1' ] } |
293 → { π2p=π2' : A [ A [ π2 o p' ] ≈ π2' ] } | |
681
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
294 → A [ pullback eq ≈ p' ] |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
295 |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
296 record Pullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c : Obj A} |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
297 ( f : Hom A a c ) ( g : Hom A b c ) |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
298 : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
299 field |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
300 ab : Obj A |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
301 π1 : Hom A ab a |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
302 π2 : Hom A ab b |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
303 isPullback : IsPullback A f g π1 π2 |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
304 |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
305 -- |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
306 -- Limit |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
307 -- |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
308 ----- |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
309 |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
310 -- Constancy Functor |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
311 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
312 K : { c₁' c₂' ℓ' : Level} (I : Category c₁' c₂' ℓ') { c₁'' c₂'' ℓ'' : Level} ( A : Category c₁'' c₂'' ℓ'' ) |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
313 → ( a : Obj A ) → Functor I A |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
314 K I A a = record { |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
315 FObj = λ i → a ; |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
316 FMap = λ f → id1 A a ; |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
317 isFunctor = let open ≈-Reasoning (A) in record { |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
318 ≈-cong = λ f=g → refl-hom |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
319 ; identity = refl-hom |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
320 ; distr = sym idL |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
321 } |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
322 } |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
323 |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
324 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
325 record IsLimit { c₁ c₂ ℓ : Level} { c₁' c₂' ℓ' : Level} ( I : Category c₁ c₂ ℓ ) ( A : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
326 (a0 : Obj A ) (t0 : NTrans I A ( K I A a0 ) Γ ) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
327 field |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
328 limit : ( a : Obj A ) → ( t : NTrans I A ( K I A a ) Γ ) → Hom A a a0 |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
329 t0f=t : { a : Obj A } → { t : NTrans I A ( K I A a ) Γ } → ∀ { i : Obj I } → |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
330 A [ A [ TMap t0 i o limit a t ] ≈ TMap t i ] |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
331 limit-uniqueness : { a : Obj A } → { t : NTrans I A ( K I A a ) Γ } → { f : Hom A a a0 } → ( ∀ { i : Obj I } → |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
332 A [ A [ TMap t0 i o f ] ≈ TMap t i ] ) → A [ limit a t ≈ f ] |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
300
diff
changeset
|
333 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
334 record Limit { c₁ c₂ ℓ : Level} { c₁' c₂' ℓ' : Level} ( I : Category c₁ c₂ ℓ ) ( A : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) |
487 | 335 : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where |
336 field | |
337 a0 : Obj A | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
338 t0 : NTrans I A ( K I A a0 ) Γ |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
339 isLimit : IsLimit I A Γ a0 t0 |
487 | 340 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
341 LimitNat : { c₁' c₂' ℓ' : Level} (I : Category c₁' c₂' ℓ') { c₁ c₂ ℓ : Level} ( B : Category c₁ c₂ ℓ ) { c₁'' c₂'' ℓ'' : Level} |
487 | 342 ( C : Category c₁'' c₂'' ℓ'' ) |
343 ( Γ : Functor I B ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
344 ( lim : Obj B ) ( tb : NTrans I B ( K I B lim ) Γ ) → |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
345 ( U : Functor B C) → NTrans I C ( K I C (FObj U lim) ) (U ○ Γ) |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
346 LimitNat I B C Γ lim tb U = record { |
487 | 347 TMap = TMap (Functor*Nat I C U tb) ; |
348 isNTrans = record { commute = λ {a} {b} {f} → let open ≈-Reasoning (C) in begin | |
349 FMap (U ○ Γ) f o TMap (Functor*Nat I C U tb) a | |
350 ≈⟨ nat ( Functor*Nat I C U tb ) ⟩ | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
351 TMap (Functor*Nat I C U tb) b o FMap (U ○ K I B lim) f |
487 | 352 ≈⟨ cdr (IsFunctor.identity (isFunctor U) ) ⟩ |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
353 TMap (Functor*Nat I C U tb) b o FMap (K I C (FObj U lim)) f |
487 | 354 ∎ |
355 } } | |
356 | |
357 open Limit | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
358 record LimitPreserve { c₁ c₂ ℓ : Level} { c₁' c₂' ℓ' : Level} ( I : Category c₁ c₂ ℓ ) ( A : Category c₁' c₂' ℓ' ) |
487 | 359 { c₁'' c₂'' ℓ'' : Level} ( C : Category c₁'' c₂'' ℓ'' ) |
360 (G : Functor A C) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁'' ⊔ c₂'' ⊔ ℓ'' )) where | |
361 field | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
362 preserve : ( Γ : Functor I A ) → ( limita : Limit I A Γ ) → |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
363 IsLimit I C (G ○ Γ) (FObj G (a0 limita ) ) (LimitNat I A C Γ (a0 limita ) (t0 limita) G ) |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
364 plimit : { Γ : Functor I A } → ( limita : Limit I A Γ ) → Limit I C (G ○ Γ ) |
492 | 365 plimit {Γ} limita = record { a0 = (FObj G (a0 limita )) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
366 ; t0 = LimitNat I A C Γ (a0 limita ) (t0 limita) G |
487 | 367 ; isLimit = preserve Γ limita } |
368 | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
369 record Complete { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) |
440 | 370 : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where |
371 field | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
372 climit : ( Γ : Functor I A ) → Limit I A Γ |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
373 cproduct : ( I : Set c₁' ) (fi : I → Obj A ) → IProduct I A fi -- c₁ should be a free level |
672 | 374 cequalizer : {a b : Obj A} (f g : Hom A a b) → Equalizer A f g |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
375 open Limit |
672 | 376 limit-c : ( Γ : Functor I A ) → Obj A |
487 | 377 limit-c Γ = a0 ( climit Γ) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
378 limit-u : ( Γ : Functor I A ) → NTrans I A ( K I A (limit-c Γ )) Γ |
487 | 379 limit-u Γ = t0 ( climit Γ) |
672 | 380 open Equalizer |
381 equalizer-p : {a b : Obj A} (f g : Hom A a b) → Obj A | |
382 equalizer-p f g = equalizer-c (cequalizer f g ) | |
383 equalizer-e : {a b : Obj A} (f g : Hom A a b) → Hom A (equalizer-p f g) a | |
384 equalizer-e f g = equalizer (cequalizer f g ) | |
526
b035cd3be525
Small Category for Sets Limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
508
diff
changeset
|
385 |
662
e1d54c0f73a7
move InitialObject to cat-utility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
526
diff
changeset
|
386 |
e1d54c0f73a7
move InitialObject to cat-utility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
526
diff
changeset
|
387 -- initial object |
e1d54c0f73a7
move InitialObject to cat-utility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
526
diff
changeset
|
388 |
695 | 389 record HasInitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (i : Obj A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where |
662
e1d54c0f73a7
move InitialObject to cat-utility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
526
diff
changeset
|
390 field |
e1d54c0f73a7
move InitialObject to cat-utility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
526
diff
changeset
|
391 initial : ∀( a : Obj A ) → Hom A i a |
e1d54c0f73a7
move InitialObject to cat-utility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
526
diff
changeset
|
392 uniqueness : { a : Obj A } → ( f : Hom A i a ) → A [ f ≈ initial a ] |
e1d54c0f73a7
move InitialObject to cat-utility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
526
diff
changeset
|
393 |
688
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
394 record InitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
395 field |
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
396 initialObject : Obj A |
695 | 397 hasInitialObject : HasInitialObject A initialObject |
688
a5f2ca67e7c5
fix monad/adjunction definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
398 |