annotate Symmetric.agda @ 34:c9dbbe12a03b

inductive hg: Enter commit message. Lines beginning with 'HG:' are removed.
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 19 Aug 2020 19:55:32 +0900
parents a986f22cde84
children 0364ad4f2a47
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
7
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
1 module Symmetric where
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 open import Level hiding ( suc ; zero )
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 open import Algebra
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import Algebra.Structures
17
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 16
diff changeset
6 open import Data.Fin hiding ( _<_ )
29
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
7 open import Data.Fin.Properties hiding ( <-cmp ; <-trans )
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
8 open import Data.Product
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Data.Fin.Permutation
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Function hiding (id ; flip)
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open import Function.LeftInverse using ( _LeftInverseOf_ )
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13 open import Function.Equality using (Π)
17
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 16
diff changeset
14 open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 16
diff changeset
15 open import Data.Nat.Properties -- using (<-trans)
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
16 open import Relation.Binary.PropositionalEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
17 open import Data.List using (List; []; _∷_ ; length)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
18 open import nat
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 fid : {p : ℕ } → Fin p → Fin p
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 fid x = x
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 -- Data.Fin.Permutation.id
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 pid : {p : ℕ } → Permutation p p
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 pid = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl }
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27 -- Data.Fin.Permutation.flip
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28 pinv : {p : ℕ } → Permutation p p → Permutation p p
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P }
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
31 record _=p=_ {p : ℕ } ( x y : Permutation p p ) : Set where
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
32 field
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
33 peq : ( q : Fin p ) → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
35 open _=p=_
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
37 prefl : {p : ℕ } { x : Permutation p p } → x =p= x
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
38 peq (prefl {p} {x}) q = refl
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
39
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
40 psym : {p : ℕ } { x y : Permutation p p } → x =p= y → y =p= x
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
41 peq (psym {p} {x} {y} eq ) q = sym (peq eq q)
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
42
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
43 ptrans : {p : ℕ } { x y z : Permutation p p } → x =p= y → y =p= z → x =p= z
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
44 peq (ptrans {p} {x} {y} x=y y=z ) q = trans (peq x=y q) (peq y=z q)
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45
7
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
46 Symmetric : ℕ → Group Level.zero Level.zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
47 Symmetric p = record {
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
48 Carrier = Permutation p p
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
49 ; _≈_ = _=p=_
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
50 ; _∙_ = _∘ₚ_
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
51 ; ε = pid
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
52 ; _⁻¹ = pinv
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
53 ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record {
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
54 isEquivalence = record {refl = prefl ; trans = ptrans ; sym = psym }
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
55 ; ∙-cong = presp }
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
56 ; assoc = passoc }
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
57 ; identity = ( (λ q → record { peq = λ q → refl } ) , (λ q → record { peq = λ q → refl } )) }
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
58 ; inverse = ( (λ x → record { peq = λ q → inverseʳ x} ) , (λ x → record { peq = λ q → inverseˡ x} ))
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
59 ; ⁻¹-cong = λ i=j → record { peq = λ q → p-inv i=j q }
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
60 }
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
61 } where
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
62 presp : {x y u v : Permutation p p } → x =p= y → u =p= v → (x ∘ₚ u) =p= (y ∘ₚ v)
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
63 presp {x} {y} {u} {v} x=y u=v = record { peq = λ q → lemma4 q } where
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
64 lemma4 : (q : Fin p) → ((x ∘ₚ u) ⟨$⟩ʳ q) ≡ ((y ∘ₚ v) ⟨$⟩ʳ q)
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
65 lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ )
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
66 passoc : (x y z : Permutation p p) → ((x ∘ₚ y) ∘ₚ z) =p= (x ∘ₚ (y ∘ₚ z))
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
67 passoc x y z = record { peq = λ q → refl }
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
68 p-inv : {i j : Permutation p p} → i =p= j → (q : Fin p) → pinv i ⟨$⟩ʳ q ≡ pinv j ⟨$⟩ʳ q
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
69 p-inv {i} {j} i=j q = begin
4
121213cfc85a add Solvable
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
70 i ⟨$⟩ˡ q ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (inverseʳ j) ) ⟩
121213cfc85a add Solvable
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
71 i ⟨$⟩ˡ ( j ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (peq i=j _ )) ⟩
121213cfc85a add Solvable
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
72 i ⟨$⟩ˡ ( i ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ inverseˡ i ⟩
121213cfc85a add Solvable
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
73 j ⟨$⟩ˡ q
3
6e77fefcbe41 Permutation Group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
74 ∎ where open ≡-Reasoning
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
75
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
76 open import Relation.Nullary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
77 open import Data.Empty
17
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 16
diff changeset
78 open import Relation.Binary.Core
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 16
diff changeset
79 open import fin
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
80
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
81 -- An inductive definition of permutation
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
82
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
83 pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n)
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
84 pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where
33
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 32
diff changeset
85 p→ : Fin (suc n) → Fin (suc n)
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
86 p→ zero = zero
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
87 p→ (suc x) = suc ( perm ⟨$⟩ˡ x)
33
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 32
diff changeset
88
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
89 p← : Fin (suc n) → Fin (suc n)
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
90 p← zero = zero
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
91 p← (suc x) = suc ( perm ⟨$⟩ʳ x)
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
92
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
93 piso← : (x : Fin (suc n)) → p→ ( p← x ) ≡ x
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
94 piso← zero = refl
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
95 piso← (suc x) = begin
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
96 p→ (p← (suc x))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
97 ≡⟨⟩
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
98 suc (perm ⟨$⟩ˡ (perm ⟨$⟩ʳ x))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
99 ≡⟨ cong (λ k → suc k ) (inverseˡ perm) ⟩
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
100 suc x
33
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 32
diff changeset
101 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 32
diff changeset
102
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
103 piso→ : (x : Fin (suc n)) → p← ( p→ x ) ≡ x
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
104 piso→ zero = refl
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
105 piso→ (suc x) = begin
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
106 p← (p→ (suc x))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
107 ≡⟨⟩
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
108 suc (perm ⟨$⟩ʳ (perm ⟨$⟩ˡ x))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
109 ≡⟨ cong (λ k → suc k ) (inverseʳ perm) ⟩
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
110 suc x
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
111 ∎ where open ≡-Reasoning
33
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 32
diff changeset
112
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
113 pswap : {n : ℕ } → Permutation n n → Permutation (suc (suc n)) (suc (suc n ))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
114 pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
115 p→ : Fin (suc (suc n)) → Fin (suc (suc n))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
116 p→ zero = suc zero
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
117 p→ (suc zero) = zero
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
118 p→ (suc (suc x)) = suc ( suc ( perm ⟨$⟩ˡ x) )
18
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 17
diff changeset
119
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
120 p← : Fin (suc (suc n)) → Fin (suc (suc n))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
121 p← zero = suc zero
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
122 p← (suc zero) = zero
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
123 p← (suc (suc x)) = suc ( suc ( perm ⟨$⟩ʳ x) )
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
124
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
125 piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
126 piso← zero = refl
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
127 piso← (suc zero) = refl
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
128 piso← (suc (suc x)) = begin
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
129 p→ (p← (suc (suc x)))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
130 ≡⟨⟩
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
131 suc ( suc (perm ⟨$⟩ˡ (perm ⟨$⟩ʳ x)))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
132 ≡⟨ cong (λ k → suc (suc k) ) (inverseˡ perm) ⟩
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
133 suc (suc x)
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
134 ∎ where open ≡-Reasoning
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
135
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
136 piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
137 piso→ zero = refl
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
138 piso→ (suc zero) = refl
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
139 piso→ (suc (suc x)) = begin
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
140 p← (p→ (suc (suc x)) )
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
141 ≡⟨⟩
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
142 suc (suc (perm ⟨$⟩ʳ (perm ⟨$⟩ˡ x)))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
143 ≡⟨ cong (λ k → suc (suc k) ) (inverseʳ perm) ⟩
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
144 suc (suc x)
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
145 ∎ where open ≡-Reasoning
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
146
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
147 -- enumeration
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
148
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
149 psawpn : {n m : ℕ} → suc m < n → Permutation n n
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
150 psawpn {suc zero} {m} (s≤s ())
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
151 psawpn {suc n} {m} (s≤s (s≤s x)) = pswap pid
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
152
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
153 pfill : {n m : ℕ} → m < n → Permutation m m → Permutation n n
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
154 pfill = {!!}
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
155
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
156 eperm : {n m : ℕ} → m < n → Permutation n n → Permutation (suc n) (suc n)
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
157 eperm {zero} ()
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
158 eperm {suc n} {0} (s≤s z≤n) perm = pprep perm
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
159 eperm {suc (suc n)} {suc m} (s≤s (s≤s m<n)) perm = {!!}