0
|
1 open import Level hiding ( suc ; zero )
|
|
2 open import Algebra
|
4
|
3 module Solvable {n m : Level} (G : Group n m ) where
|
0
|
4
|
4
|
5 open import Data.Unit
|
|
6 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
|
6
|
7 open import Function
|
7
|
8 open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero)
|
4
|
9 open import Relation.Nullary
|
|
10 open import Data.Empty
|
5
|
11 open import Data.Product
|
|
12 open import Relation.Binary.PropositionalEquality hiding ( [_] )
|
|
13
|
0
|
14
|
4
|
15 open Group G
|
0
|
16
|
4
|
17 [_,_] : Carrier → Carrier → Carrier
|
|
18 [ g , h ] = g ⁻¹ ∙ h ⁻¹ ∙ g ∙ h
|
0
|
19
|
5
|
20 data Commutator (P : Carrier → Set (Level.suc n ⊔ m)) : (f : Carrier) → Set (Level.suc n ⊔ m) where
|
6
|
21 uni : Commutator P ε
|
|
22 comm : {g h : Carrier} → P g → P h → Commutator P [ g , h ]
|
|
23 gen : {f g : Carrier} → Commutator P f → Commutator P g → Commutator P ( f ∙ g )
|
|
24 ccong : {f g : Carrier} → f ≈ g → Commutator P f → Commutator P g
|
5
|
25
|
|
26 deriving : ( i : ℕ ) → Carrier → Set (Level.suc n ⊔ m)
|
|
27 deriving 0 x = Lift (Level.suc n ⊔ m) ⊤
|
|
28 deriving (suc i) x = Commutator (deriving i) x
|
|
29
|
4
|
30 record Solvable : Set (Level.suc n ⊔ m) where
|
|
31 field
|
|
32 dervied-length : ℕ
|
|
33 end : (x : Carrier ) → deriving dervied-length x → x ≈ ε
|
6
|
34
|
|
35 -- deriving stage is closed on multiplication and inversion
|
|
36
|
|
37 import Relation.Binary.Reasoning.Setoid as EqReasoning
|
|
38
|
|
39 gsym = Algebra.Group.sym G
|
|
40 grefl = Algebra.Group.refl G
|
11
|
41 gtrans = Algebra.Group.trans G
|
8
|
42
|
6
|
43 lemma3 : ε ≈ ε ⁻¹
|
|
44 lemma3 = begin
|
|
45 ε ≈⟨ gsym (proj₁ inverse _) ⟩
|
|
46 ε ⁻¹ ∙ ε ≈⟨ proj₂ identity _ ⟩
|
|
47 ε ⁻¹
|
|
48 ∎ where open EqReasoning (Algebra.Group.setoid G)
|
|
49
|
8
|
50 lemma6 : {f : Carrier } → ( f ⁻¹ ) ⁻¹ ≈ f
|
|
51 lemma6 {f} = begin
|
|
52 ( f ⁻¹ ) ⁻¹ ≈⟨ gsym ( proj₁ identity _) ⟩
|
|
53 ε ∙ ( f ⁻¹ ) ⁻¹ ≈⟨ ∙-cong (gsym ( proj₂ inverse _ )) grefl ⟩
|
|
54 (f ∙ f ⁻¹ ) ∙ ( f ⁻¹ ) ⁻¹ ≈⟨ assoc _ _ _ ⟩
|
|
55 f ∙ ( f ⁻¹ ∙ ( f ⁻¹ ) ⁻¹ ) ≈⟨ ∙-cong grefl (proj₂ inverse _) ⟩
|
|
56 f ∙ ε ≈⟨ proj₂ identity _ ⟩
|
|
57 f
|
|
58 ∎ where open EqReasoning (Algebra.Group.setoid G)
|
6
|
59
|
11
|
60 ≡→≈ : {f g : Carrier } → f ≡ g → f ≈ g
|
|
61 ≡→≈ refl = grefl
|
|
62
|
9
|
63 data MP : Carrier → Set (Level.suc n) where
|
|
64 am : (x : Carrier ) → MP x
|
|
65 _o_ : {x y : Carrier } → MP x → MP y → MP ( x ∙ y )
|
|
66
|
|
67 mpf : {x : Carrier } → (m : MP x ) → Carrier → Carrier
|
|
68 mpf {x} (am x) y = x ∙ y
|
|
69 mpf (m o m₁) y = mpf m ( mpf m₁ y )
|
|
70
|
|
71 mp-flatten : {x : Carrier } → (m : MP x ) → Carrier
|
|
72 mp-flatten {x} m = mpf {x} m ε
|
11
|
73
|
9
|
74 ∙-flatten : {x : Carrier } → (m : MP x ) → x ≈ mp-flatten m
|
|
75 ∙-flatten {x} (am x) = gsym (proj₂ identity _)
|
|
76 ∙-flatten {_} (am x o q) = ∙-cong grefl ( ∙-flatten q )
|
11
|
77 ∙-flatten (_o_ {_} {z} (_o_ {x} {y} p q) r) = lemma9 _ _ _ ( ∙-flatten {x ∙ y } (p o q )) ( ∙-flatten {z} r ) where
|
|
78 mp-cong : {p q r : Carrier} → (P : MP p) → q ≈ r → mpf P q ≈ mpf P r
|
|
79 mp-cong (am x) q=r = ∙-cong grefl q=r
|
|
80 mp-cong (P o P₁) q=r = mp-cong P ( mp-cong P₁ q=r )
|
|
81 mp-assoc : {p q r : Carrier} → (P : MP p) → mpf P q ∙ r ≈ mpf P (q ∙ r )
|
|
82 mp-assoc (am x) = assoc _ _ _
|
|
83 mp-assoc {p} {q} {r} (P o P₁) = begin
|
|
84 mpf P (mpf P₁ q) ∙ r ≈⟨ mp-assoc P ⟩
|
|
85 mpf P (mpf P₁ q ∙ r) ≈⟨ mp-cong P (mp-assoc P₁) ⟩
|
|
86 mpf P ((mpf P₁) (q ∙ r))
|
|
87 ∎ where open EqReasoning (Algebra.Group.setoid G)
|
|
88 lemma9 : (x y z : Carrier) → x ∙ y ≈ mpf p (mpf q ε) → z ≈ mpf r ε → x ∙ y ∙ z ≈ mp-flatten ((p o q) o r)
|
|
89 lemma9 x y z t s = begin
|
|
90 x ∙ y ∙ z ≈⟨ ∙-cong t grefl ⟩
|
|
91 mpf p (mpf q ε) ∙ z ≈⟨ mp-assoc p ⟩
|
|
92 mpf p (mpf q ε ∙ z) ≈⟨ mp-cong p (mp-assoc q ) ⟩
|
|
93 mpf p (mpf q (ε ∙ z)) ≈⟨ mp-cong p (mp-cong q (proj₁ identity _ )) ⟩
|
|
94 mpf p (mpf q z) ≈⟨ mp-cong p (mp-cong q s) ⟩
|
|
95 mpf p (mpf q (mpf r ε))
|
|
96 ∎ where open EqReasoning (Algebra.Group.setoid G)
|
9
|
97
|
12
|
98 mpg : {x : Carrier } → (m : MP x ) → Carrier → Carrier
|
|
99 mpg {x} (am x) y = y ∙ x
|
|
100 mpg (m o m₁) y = mpf m₁ ( mpf m y )
|
|
101
|
|
102 mp-flatten-g : {x : Carrier } → (m : MP x ) → Carrier
|
|
103 mp-flatten-g {x} m = mpg {x} m ε
|
|
104
|
|
105 ∙-flatten-g : {x : Carrier } → (m : MP x ) → x ≈ mp-flatten-g m
|
|
106 ∙-flatten-g {x} (am x) = gsym (proj₁ identity _)
|
|
107 ∙-flatten-g {_} (am x o q) = {!!} -- ∙-cong ( ∙-flatten-g q ) grefl
|
|
108 ∙-flatten-g (_o_ {_} {z} (_o_ {x} {y} p q) r) = lemma9 _ _ _ {!!} ( ∙-flatten-g {z} r ) where
|
|
109 mp-cong : {p q r : Carrier} → (P : MP p) → q ≈ r → mpg P q ≈ mpg P r
|
|
110 mp-cong (am x) q=r = {!!} -- ∙-cong grefl q=r
|
|
111 mp-cong (P o P₁) q=r = {!!} -- mp-cong P ( mp-cong P₁ q=r )
|
|
112 mp-assoc : {p q r : Carrier} → (P : MP p) → mpg P q ∙ r ≈ mpg P (q ∙ r )
|
|
113 mp-assoc (am x) = {!!} -- assoc _ _ _
|
|
114 mp-assoc {p} {q} {r} (P o P₁) = begin
|
|
115 {!!} ≈⟨ {!!} ⟩
|
|
116 {!!}
|
|
117 ∎ where open EqReasoning (Algebra.Group.setoid G)
|
|
118 lemma9 : (x y z : Carrier) → x ∙ y ≈ mpg p (mpg q ε) → z ≈ mpg r ε → x ∙ y ∙ z ≈ mp-flatten-g ((p o q) o r)
|
|
119 lemma9 x y z t s = begin
|
|
120 {!!} ≈⟨ {!!} ⟩
|
|
121 {!!}
|
|
122 ∎ where open EqReasoning (Algebra.Group.setoid G)
|
|
123
|
|
124 tet1 : (f g : Carrier ) → {!!}
|
|
125 tet1 f g = mp-flatten-g ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ )))
|
|
126
|
|
127 tet2 : (f g : Carrier ) → {!!}
|
|
128 tet2 f g = mp-flatten ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ )))
|
9
|
129
|
8
|
130 lemma5 : (f g : Carrier ) → g ⁻¹ ∙ f ⁻¹ ≈ (f ∙ g) ⁻¹
|
|
131 lemma5 f g = begin
|
12
|
132 g ⁻¹ ∙ f ⁻¹ ≈⟨ gsym (proj₂ identity _) ⟩
|
|
133 g ⁻¹ ∙ f ⁻¹ ∙ ε ≈⟨ gsym (∙-cong grefl (proj₂ inverse _ )) ⟩
|
|
134 g ⁻¹ ∙ f ⁻¹ ∙ ( (f ∙ g) ∙ (f ∙ g) ⁻¹ ) ≈⟨ ∙-flatten ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ ))) ⟩
|
|
135 g ⁻¹ ∙ (f ⁻¹ ∙ (f ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)))) ≈⟨ ∙-cong grefl (gsym (assoc _ _ _ )) ⟩
|
|
136 g ⁻¹ ∙ ((f ⁻¹ ∙ f) ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε))) ≈⟨ ∙-cong grefl (gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _)) ⟩
|
|
137 g ⁻¹ ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)) ≈⟨ gsym (assoc _ _ _) ⟩
|
|
138 (g ⁻¹ ∙ g ) ∙ ((f ∙ g) ⁻¹ ∙ ε) ≈⟨ gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _) ⟩
|
|
139 (f ∙ g) ⁻¹ ∙ ε ≈⟨ proj₂ identity _ ⟩
|
8
|
140 (f ∙ g) ⁻¹
|
|
141 ∎ where open EqReasoning (Algebra.Group.setoid G)
|
6
|
142
|
8
|
143 lemma4 : (g h : Carrier ) → [ h , g ] ≈ [ g , h ] ⁻¹
|
|
144 lemma4 g h = begin
|
|
145 [ h , g ] ≈⟨ grefl ⟩
|
|
146 (h ⁻¹ ∙ g ⁻¹ ∙ h ) ∙ g ≈⟨ assoc _ _ _ ⟩
|
|
147 h ⁻¹ ∙ g ⁻¹ ∙ (h ∙ g) ≈⟨ ∙-cong grefl (gsym (∙-cong lemma6 lemma6)) ⟩
|
|
148 h ⁻¹ ∙ g ⁻¹ ∙ ((h ⁻¹) ⁻¹ ∙ (g ⁻¹) ⁻¹) ≈⟨ ∙-cong grefl (lemma5 _ _ ) ⟩
|
|
149 h ⁻¹ ∙ g ⁻¹ ∙ (g ⁻¹ ∙ h ⁻¹) ⁻¹ ≈⟨ assoc _ _ _ ⟩
|
|
150 h ⁻¹ ∙ (g ⁻¹ ∙ (g ⁻¹ ∙ h ⁻¹) ⁻¹) ≈⟨ ∙-cong grefl (lemma5 (g ⁻¹ ∙ h ⁻¹ ) g ) ⟩
|
|
151 h ⁻¹ ∙ (g ⁻¹ ∙ h ⁻¹ ∙ g) ⁻¹ ≈⟨ lemma5 (g ⁻¹ ∙ h ⁻¹ ∙ g) h ⟩
|
|
152 (g ⁻¹ ∙ h ⁻¹ ∙ g ∙ h) ⁻¹ ≈⟨ grefl ⟩
|
|
153 [ g , h ] ⁻¹
|
|
154 ∎ where open EqReasoning (Algebra.Group.setoid G)
|
6
|
155
|
|
156 deriving-mul : { i : ℕ } → { x y : Carrier } → deriving i x → deriving i y → deriving i ( x ∙ y )
|
|
157 deriving-mul {zero} {x} {y} _ _ = lift tt
|
|
158 deriving-mul {suc i} {x} {y} ix iy = gen ix iy
|
|
159
|
|
160 deriving-inv : { i : ℕ } → { x : Carrier } → deriving i x → deriving i ( x ⁻¹ )
|
|
161 deriving-inv {zero} {x} (lift tt) = lift tt
|
|
162 deriving-inv {suc i} {ε} uni = ccong lemma3 uni
|
|
163 deriving-inv {suc i} {_} (comm x x₁ ) = ccong (lemma4 _ _) (comm x₁ x) where
|
|
164 deriving-inv {suc i} {_} (gen x x₁ ) = ccong (lemma5 _ _ ) ( gen (deriving-inv x₁) (deriving-inv x)) where
|
|
165 deriving-inv {suc i} {x} (ccong eq ix ) = ccong (⁻¹-cong eq) ( deriving-inv ix )
|
|
166
|