Mercurial > hg > Members > Moririn
annotate hoareBinaryTree.agda @ 706:2eedafdd95a6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 06 Dec 2021 06:59:55 +0900 |
parents | fa0feb3c7adf |
children | d0eafb67bf8d |
rev | line source |
---|---|
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
1 module hoareBinaryTree where |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
2 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
3 open import Level renaming (zero to Z ; suc to succ) |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
4 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
5 open import Data.Nat hiding (compare) |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
6 open import Data.Nat.Properties as NatProp |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
7 open import Data.Maybe |
588 | 8 -- open import Data.Maybe.Properties |
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
9 open import Data.Empty |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
10 open import Data.List |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
11 open import Data.Product |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
12 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
13 open import Function as F hiding (const) |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
14 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
15 open import Relation.Binary |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
16 open import Relation.Binary.PropositionalEquality |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
17 open import Relation.Nullary |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
18 open import logic |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
19 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
20 |
588 | 21 _iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set |
22 d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d)) | |
23 | |
24 iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y | |
25 iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ } | |
26 | |
590 | 27 -- |
28 -- | |
29 -- no children , having left node , having right node , having both | |
30 -- | |
597 | 31 data bt {n : Level} (A : Set n) : Set n where |
604 | 32 leaf : bt A |
33 node : (key : ℕ) → (value : A) → | |
610 | 34 (left : bt A ) → (right : bt A ) → bt A |
600 | 35 |
620 | 36 node-key : {n : Level} {A : Set n} → bt A → Maybe ℕ |
37 node-key (node key _ _ _) = just key | |
38 node-key _ = nothing | |
39 | |
40 node-value : {n : Level} {A : Set n} → bt A → Maybe A | |
41 node-value (node _ value _ _) = just value | |
42 node-value _ = nothing | |
43 | |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
44 bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
45 bt-depth leaf = 0 |
618 | 46 bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ )) |
606 | 47 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
48 find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A) |
604 | 49 → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t |
50 find key leaf st _ exit = exit leaf st | |
632 | 51 find key (node key₁ v1 tree tree₁) st next exit with <-cmp key key₁ |
604 | 52 find key n st _ exit | tri≈ ¬a b ¬c = exit n st |
632 | 53 find key n@(node key₁ v1 tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st) |
54 find key n@(node key₁ v1 tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st) | |
597 | 55 |
604 | 56 {-# TERMINATING #-} |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
57 find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t |
611 | 58 find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where |
604 | 59 find-loop1 : bt A → List (bt A) → t |
60 find-loop1 tree st = find key tree st find-loop1 exit | |
600 | 61 |
611 | 62 replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t |
632 | 63 replaceNode k v1 leaf next = next (node k v1 leaf leaf) |
64 replaceNode k v1 (node key value t t₁) next = next (node k v1 t t₁) | |
611 | 65 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
66 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t |
669 | 67 replace key value repl [] next exit = exit repl -- can't happen |
690 | 68 replace key value repl (leaf ∷ []) next exit = exit repl |
669 | 69 replace key value repl (node key₁ value₁ left right ∷ []) next exit with <-cmp key key₁ |
70 ... | tri< a ¬b ¬c = exit (node key₁ value₁ repl right ) | |
664 | 71 ... | tri≈ ¬a b ¬c = exit (node key₁ value left right ) |
669 | 72 ... | tri> ¬a ¬b c = exit (node key₁ value₁ left repl ) |
690 | 73 replace key value repl (leaf ∷ st) next exit = next key value repl st |
669 | 74 replace key value repl (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ |
75 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st | |
604 | 76 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st |
669 | 77 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st |
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
78 |
604 | 79 {-# TERMINATING #-} |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
80 replace-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (exit : bt A → t) → t |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
81 replace-loop {_} {_} {A} {t} key value tree st exit = replace-loop1 key value tree st where |
604 | 82 replace-loop1 : (key : ℕ) → (value : A) → bt A → List (bt A) → t |
83 replace-loop1 key value tree st = replace key value tree st replace-loop1 exit | |
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
84 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
85 insertTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t |
662 | 86 insertTree tree key value exit = find-loop key tree ( tree ∷ [] ) $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit |
587 | 87 |
604 | 88 insertTest1 = insertTree leaf 1 1 (λ x → x ) |
611 | 89 insertTest2 = insertTree insertTest1 2 1 (λ x → x ) |
669 | 90 insertTest3 = insertTree insertTest2 3 2 (λ x → x ) |
696 | 91 insertTest4 = insertTree insertTest3 2 2 (λ x → x ) -- this is wrong |
587 | 92 |
605 | 93 open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) |
94 | |
620 | 95 data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where |
96 t-leaf : treeInvariant leaf | |
632 | 97 t-single : (key : ℕ) → (value : A) → treeInvariant (node key value leaf leaf) |
98 t-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key₁ value₁ t₁ t₂) | |
99 → treeInvariant (node key value leaf (node key₁ value₁ t₁ t₂)) | |
692 | 100 t-left : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key value t₁ t₂) |
632 | 101 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) leaf ) |
620 | 102 t-node : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} → (key < key₁) → (key₁ < key₂) |
103 → treeInvariant (node key value t₁ t₂) | |
104 → treeInvariant (node key₂ value₂ t₃ t₄) | |
105 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) | |
605 | 106 |
662 | 107 -- |
108 -- stack always contains original top at end | |
109 -- | |
110 data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (top orig : bt A) → (stack : List (bt A)) → Set n where | |
675 | 111 s-single : {tree0 : bt A} → stackInvariant key tree0 tree0 (tree0 ∷ []) |
653 | 112 s-right : {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} |
662 | 113 → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree tree0 (tree ∷ st) |
653 | 114 s-left : {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} |
662 | 115 → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree₁ tree0 (tree₁ ∷ st) |
639 | 116 |
677 | 117 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt A ) → Set n where |
639 | 118 r-leaf : replacedTree key value leaf (node key value leaf leaf) |
119 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) | |
120 r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} | |
677 | 121 → k < key → replacedTree key value t2 t → replacedTree key value (node k v1 t1 t2) (node k v1 t1 t) |
639 | 122 r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} |
687 | 123 → key < k → replacedTree key value t1 t → replacedTree key value (node k v1 t1 t2) (node k v1 t t2) |
652 | 124 |
632 | 125 add< : { i : ℕ } (j : ℕ ) → i < suc i + j |
126 add< {i} j = begin | |
127 suc i ≤⟨ m≤m+n (suc i) j ⟩ | |
128 suc i + j ∎ where open ≤-Reasoning | |
129 | |
130 treeTest1 : bt ℕ | |
692 | 131 treeTest1 = node 0 0 leaf (node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf)) |
632 | 132 treeTest2 : bt ℕ |
692 | 133 treeTest2 = node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf) |
632 | 134 |
135 treeInvariantTest1 : treeInvariant treeTest1 | |
692 | 136 treeInvariantTest1 = t-right (m≤m+n _ 2) (t-node (add< 0) (add< 1) (t-left (add< 0) (t-single 1 7)) (t-single 5 5) ) |
605 | 137 |
639 | 138 stack-top : {n : Level} {A : Set n} (stack : List (bt A)) → Maybe (bt A) |
139 stack-top [] = nothing | |
140 stack-top (x ∷ s) = just x | |
606 | 141 |
639 | 142 stack-last : {n : Level} {A : Set n} (stack : List (bt A)) → Maybe (bt A) |
143 stack-last [] = nothing | |
144 stack-last (x ∷ []) = just x | |
145 stack-last (x ∷ s) = stack-last s | |
632 | 146 |
662 | 147 stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) |
692 | 148 stackInvariantTest1 = s-right (add< 3) (s-single ) |
662 | 149 |
666 | 150 si-property0 : {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → {stack : List (bt A)} → stackInvariant key tree tree0 stack → ¬ ( stack ≡ [] ) |
675 | 151 si-property0 (s-single ) () |
666 | 152 si-property0 (s-right x si) () |
153 si-property0 (s-left x si) () | |
665 | 154 |
666 | 155 si-property1 : {n : Level} {A : Set n} {key : ℕ} {tree tree0 tree1 : bt A} → {stack : List (bt A)} → stackInvariant key tree tree0 (tree1 ∷ stack) |
156 → tree1 ≡ tree | |
675 | 157 si-property1 (s-single ) = refl |
666 | 158 si-property1 (s-right _ si) = refl |
159 si-property1 (s-left _ si) = refl | |
662 | 160 |
663
cf5095488bbd
stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
662
diff
changeset
|
161 si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → stackInvariant key tree tree0 stack |
662 | 162 → stack-last stack ≡ just tree0 |
675 | 163 si-property-last key t t0 (t ∷ []) (s-single ) = refl |
666 | 164 si-property-last key t t0 (.t ∷ x ∷ st) (s-right _ si ) with si-property1 si |
663
cf5095488bbd
stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
662
diff
changeset
|
165 ... | refl = si-property-last key x t0 (x ∷ st) si |
666 | 166 si-property-last key t t0 (.t ∷ x ∷ st) (s-left _ si ) with si-property1 si |
663
cf5095488bbd
stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
662
diff
changeset
|
167 ... | refl = si-property-last key x t0 (x ∷ st) si |
656 | 168 |
642 | 169 ti-right : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 tree₁ repl) → treeInvariant repl |
170 ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf | |
171 ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-right x ti) = ti | |
172 ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-left x ti) = t-leaf | |
173 ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti₁ | |
174 | |
175 ti-left : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 repl tree₁ ) → treeInvariant repl | |
176 ti-left {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf | |
177 ti-left {_} {_} {_} {_} {key₁} {v1} (t-right x ti) = t-leaf | |
178 ti-left {_} {_} {_} {_} {key₁} {v1} (t-left x ti) = ti | |
179 ti-left {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti | |
180 | |
662 | 181 stackTreeInvariant : {n : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A)) |
182 → treeInvariant tree → stackInvariant key sub tree stack → treeInvariant sub | |
675 | 183 stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-single ) = ti |
662 | 184 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si ) = ti-right (si1 si) where |
185 si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant (node key₁ v1 tree₁ sub ) | |
186 si1 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 tree₁ sub ) tree st ti si | |
187 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-left _ si ) = ti-left ( si2 si) where | |
188 si2 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 sub tree₁ ) tree st → treeInvariant (node key₁ v1 sub tree₁ ) | |
189 si2 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 sub tree₁ ) tree st ti si | |
190 | |
639 | 191 rt-property1 : {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf ) |
192 rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf () | |
193 rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node () | |
677 | 194 rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-right x rt) = λ () |
195 rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-left x rt) = λ () | |
639 | 196 |
690 | 197 rt-property-leaf : {n : Level} {A : Set n} {key : ℕ} {value : A} {repl : bt A} → replacedTree key value leaf repl → repl ≡ node key value leaf leaf |
198 rt-property-leaf r-leaf = refl | |
199 | |
698 | 200 rt-property-¬leaf : {n : Level} {A : Set n} {key : ℕ} {value : A} {tree : bt A} → ¬ replacedTree key value tree leaf |
201 rt-property-¬leaf () | |
202 | |
692 | 203 rt-property-key : {n : Level} {A : Set n} {key key₂ key₃ : ℕ} {value value₂ value₃ : A} {left left₁ right₂ right₃ : bt A} |
204 → replacedTree key value (node key₂ value₂ left right₂) (node key₃ value₃ left₁ right₃) → key₂ ≡ key₃ | |
205 rt-property-key r-node = refl | |
206 rt-property-key (r-right x ri) = refl | |
207 rt-property-key (r-left x ri) = refl | |
208 | |
698 | 209 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ |
210 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x | |
211 nat-<> : { x y : ℕ } → x < y → y < x → ⊥ | |
212 nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x | |
213 | |
214 open _∧_ | |
215 | |
216 | |
632 | 217 depth-1< : {i j : ℕ} → suc i ≤ suc (i Data.Nat.⊔ j ) |
218 depth-1< {i} {j} = s≤s (m≤m⊔n _ j) | |
219 | |
220 depth-2< : {i j : ℕ} → suc i ≤ suc (j Data.Nat.⊔ i ) | |
650 | 221 depth-2< {i} {j} = s≤s (m≤n⊔m j i) |
611 | 222 |
649 | 223 depth-3< : {i : ℕ } → suc i ≤ suc (suc i) |
224 depth-3< {zero} = s≤s ( z≤n ) | |
225 depth-3< {suc i} = s≤s (depth-3< {i} ) | |
226 | |
227 | |
634 | 228 treeLeftDown : {n : Level} {A : Set n} {k : ℕ} {v1 : A} → (tree tree₁ : bt A ) |
229 → treeInvariant (node k v1 tree tree₁) | |
230 → treeInvariant tree | |
231 treeLeftDown {n} {A} {_} {v1} leaf leaf (t-single k1 v1) = t-leaf | |
232 treeLeftDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = t-leaf | |
233 treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = ti | |
234 treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti | |
235 | |
236 treeRightDown : {n : Level} {A : Set n} {k : ℕ} {v1 : A} → (tree tree₁ : bt A ) | |
237 → treeInvariant (node k v1 tree tree₁) | |
238 → treeInvariant tree₁ | |
239 treeRightDown {n} {A} {_} {v1} .leaf .leaf (t-single _ .v1) = t-leaf | |
240 treeRightDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = ti | |
241 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = t-leaf | |
242 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁ | |
243 | |
704 | 244 |
705 | 245 record FindCond {n : Level} {A : Set n} (C : ℕ → bt A → Set n) : Set (Level.suc n) where |
704 | 246 field |
705 | 247 c1 : {key key₁ : ℕ} {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key < key₁ → C key tree |
248 c2 : {key key₁ : ℕ} {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key > key₁ → C key tree₁ | |
704 | 249 |
250 | |
251 findP0 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | |
705 | 252 → {C : ℕ → bt A → Set n} → C key tree → FindCond C |
704 | 253 → (next : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 → bt-depth tree1 < bt-depth tree → t ) |
254 → (exit : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 | |
255 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t | |
705 | 256 findP0 key leaf st Pre _ _ exit = exit leaf st Pre (case1 refl) |
257 findP0 key (node key₁ v1 tree tree₁) st Pre _ next exit with <-cmp key key₁ | |
258 findP0 key n st Pre e _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) | |
259 findP0 {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre e next _ | tri< a ¬b ¬c = next tree (tree ∷ st) (FindCond.c1 e Pre a) depth-1< | |
260 findP0 key n@(node key₁ v1 tree tree₁) st Pre e next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) (FindCond.c2 e Pre c) depth-2< | |
704 | 261 |
615 | 262 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) |
662 | 263 → treeInvariant tree ∧ stackInvariant key tree tree0 stack |
693 | 264 → (next : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) |
265 → (exit : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack | |
638 | 266 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t |
693 | 267 findP key leaf tree0 st Pre _ exit = exit leaf st Pre (case1 refl) |
632 | 268 findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁ |
693 | 269 findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) |
270 findP {n} {_} {A} key (node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree (tree ∷ st) | |
663
cf5095488bbd
stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
662
diff
changeset
|
271 ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where |
cf5095488bbd
stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
662
diff
changeset
|
272 findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st) |
664 | 273 findP1 a (x ∷ st) si = s-left a si |
693 | 274 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2< |
606 | 275 |
638 | 276 replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) |
277 replaceTree1 k v1 value (t-single .k .v1) = t-single k value | |
278 replaceTree1 k v1 value (t-right x t) = t-right x t | |
279 replaceTree1 k v1 value (t-left x t) = t-left x t | |
280 replaceTree1 k v1 value (t-node x x₁ t t₁) = t-node x x₁ t t₁ | |
281 | |
649 | 282 open import Relation.Binary.Definitions |
283 | |
284 lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥ | |
285 lemma3 refl () | |
286 lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥ | |
287 lemma5 (s≤s z≤n) () | |
700 | 288 ¬x<x : {x : ℕ} → ¬ (x < x) |
289 ¬x<x (s≤s lt) = ¬x<x lt | |
649 | 290 |
687 | 291 child-replaced : {n : Level} {A : Set n} (key : ℕ) (tree : bt A) → bt A |
292 child-replaced key leaf = leaf | |
293 child-replaced key (node key₁ value left right) with <-cmp key key₁ | |
294 ... | tri< a ¬b ¬c = left | |
295 ... | tri≈ ¬a b ¬c = node key₁ value left right | |
296 ... | tri> ¬a ¬b c = right | |
677 | 297 |
671
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
298 record replacePR {n : Level} {A : Set n} (key : ℕ) (value : A) (tree repl : bt A ) (stack : List (bt A)) (C : bt A → bt A → List (bt A) → Set n) : Set n where |
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
299 field |
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
300 tree0 : bt A |
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
301 ti : treeInvariant tree0 |
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
302 si : stackInvariant key tree tree0 stack |
687 | 303 ri : replacedTree key value (child-replaced key tree ) repl |
671
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
304 ci : C tree repl stack -- data continuation |
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
305 |
638 | 306 replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) |
307 → (tree ≡ leaf ) ∨ ( node-key tree ≡ just key ) | |
694 | 308 → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value (child-replaced key tree) tree1 → t) → t |
309 replaceNodeP k v1 leaf C P next = next (node k v1 leaf leaf) (t-single k v1 ) r-leaf | |
310 replaceNodeP k v1 (node .k value t t₁) (case2 refl) P next = next (node k v1 t t₁) (replaceTree1 k value v1 P) | |
695 | 311 (subst (λ j → replacedTree k v1 j (node k v1 t t₁) ) repl00 r-node) where |
694 | 312 repl00 : node k value t t₁ ≡ child-replaced k (node k value t t₁) |
313 repl00 with <-cmp k k | |
314 ... | tri< a ¬b ¬c = ⊥-elim (¬b refl) | |
315 ... | tri≈ ¬a b ¬c = refl | |
316 ... | tri> ¬a ¬b c = ⊥-elim (¬b refl) | |
606 | 317 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
318 replaceP : {n m : Level} {A : Set n} {t : Set m} |
671
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
319 → (key : ℕ) → (value : A) → {tree : bt A} ( repl : bt A) |
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
320 → (stack : List (bt A)) → replacePR key value tree repl stack (λ _ _ _ → Lift n ⊤) |
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
321 → (next : ℕ → A → {tree1 : bt A } (repl : bt A) → (stack1 : List (bt A)) |
b5fde9727830
use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
670
diff
changeset
|
322 → replacePR key value tree1 repl stack1 (λ _ _ _ → Lift n ⊤) → length stack1 < length stack → t) |
613 | 323 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t |
675 | 324 replaceP key value {tree} repl [] Pre next exit = ⊥-elim ( si-property0 (replacePR.si Pre) refl ) -- can't happen |
325 replaceP key value {tree} repl (leaf ∷ []) Pre next exit with si-property-last _ _ _ _ (replacePR.si Pre)-- tree0 ≡ leaf | |
677 | 326 ... | refl = exit (replacePR.tree0 Pre) (node key value leaf leaf) ⟪ replacePR.ti Pre , r-leaf ⟫ |
689 | 327 replaceP key value {tree} repl (node key₁ value₁ left right ∷ []) Pre next exit with <-cmp key key₁ |
328 ... | tri< a ¬b ¬c = exit (replacePR.tree0 Pre) (node key₁ value₁ repl right ) ⟪ replacePR.ti Pre , repl01 ⟫ where | |
329 repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ repl right ) | |
330 repl01 with si-property1 (replacePR.si Pre) | si-property-last _ _ _ _ (replacePR.si Pre) | |
331 repl01 | refl | refl = subst (λ k → replacedTree key value (node key₁ value₁ k right ) (node key₁ value₁ repl right )) repl02 (r-left a repl03) where | |
332 repl03 : replacedTree key value ( child-replaced key (node key₁ value₁ left right)) repl | |
333 repl03 = replacePR.ri Pre | |
334 repl02 : child-replaced key (node key₁ value₁ left right) ≡ left | |
335 repl02 with <-cmp key key₁ | |
336 ... | tri< a ¬b ¬c = refl | |
337 ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a a) | |
338 ... | tri> ¬a ¬b c = ⊥-elim ( ¬a a) | |
339 ... | tri≈ ¬a b ¬c = exit (replacePR.tree0 Pre) repl ⟪ replacePR.ti Pre , repl01 ⟫ where | |
678 | 340 repl01 : replacedTree key value (replacePR.tree0 Pre) repl |
341 repl01 with si-property1 (replacePR.si Pre) | si-property-last _ _ _ _ (replacePR.si Pre) | |
689 | 342 repl01 | refl | refl = subst (λ k → replacedTree key value k repl) repl02 (replacePR.ri Pre) where |
343 repl02 : child-replaced key (node key₁ value₁ left right) ≡ node key₁ value₁ left right | |
344 repl02 with <-cmp key key₁ | |
345 ... | tri< a ¬b ¬c = ⊥-elim ( ¬b b) | |
346 ... | tri≈ ¬a b ¬c = refl | |
347 ... | tri> ¬a ¬b c = ⊥-elim ( ¬b b) | |
348 ... | tri> ¬a ¬b c = exit (replacePR.tree0 Pre) (node key₁ value₁ left repl ) ⟪ replacePR.ti Pre , repl01 ⟫ where | |
349 repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ left repl ) | |
350 repl01 with si-property1 (replacePR.si Pre) | si-property-last _ _ _ _ (replacePR.si Pre) | |
351 repl01 | refl | refl = subst (λ k → replacedTree key value (node key₁ value₁ left k ) (node key₁ value₁ left repl )) repl02 (r-right c repl03) where | |
352 repl03 : replacedTree key value ( child-replaced key (node key₁ value₁ left right)) repl | |
353 repl03 = replacePR.ri Pre | |
354 repl02 : child-replaced key (node key₁ value₁ left right) ≡ right | |
355 repl02 with <-cmp key key₁ | |
356 ... | tri< a ¬b ¬c = ⊥-elim ( ¬c c) | |
357 ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬c c) | |
358 ... | tri> ¬a ¬b c = refl | |
690 | 359 replaceP {n} {_} {A} key value {tree} repl (leaf ∷ st@(tree1 ∷ st1)) Pre next exit = next key value repl st Post ≤-refl where |
360 Post : replacePR key value tree1 repl (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤) | |
361 Post with replacePR.si Pre | |
362 ... | s-right {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where | |
363 repl09 : tree1 ≡ node key₂ v1 tree₁ leaf | |
364 repl09 = si-property1 si | |
365 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) | |
366 repl10 with si-property1 si | |
367 ... | refl = si | |
368 repl07 : child-replaced key (node key₂ v1 tree₁ leaf) ≡ leaf | |
369 repl07 with <-cmp key key₂ | |
370 ... | tri< a ¬b ¬c = ⊥-elim (¬c x) | |
371 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c x) | |
372 ... | tri> ¬a ¬b c = refl | |
373 repl12 : replacedTree key value (child-replaced key tree1 ) repl | |
374 repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf | |
375 ... | s-left {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where | |
376 repl09 : tree1 ≡ node key₂ v1 leaf tree₁ | |
377 repl09 = si-property1 si | |
378 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) | |
379 repl10 with si-property1 si | |
380 ... | refl = si | |
381 repl07 : child-replaced key (node key₂ v1 leaf tree₁ ) ≡ leaf | |
382 repl07 with <-cmp key key₂ | |
383 ... | tri< a ¬b ¬c = refl | |
384 ... | tri≈ ¬a b ¬c = ⊥-elim (¬a x) | |
385 ... | tri> ¬a ¬b c = ⊥-elim (¬a x) | |
386 repl12 : replacedTree key value (child-replaced key tree1 ) repl | |
387 repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf | |
683 | 388 replaceP {n} {_} {A} key value {tree} repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre next exit with <-cmp key key₁ |
389 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st Post ≤-refl where | |
675 | 390 Post : replacePR key value tree1 (node key₁ value₁ repl right ) st (λ _ _ _ → Lift n ⊤) |
687 | 391 Post with replacePR.si Pre |
688 | 392 ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where |
393 repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) | |
394 repl09 = si-property1 si | |
395 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) | |
396 repl10 with si-property1 si | |
397 ... | refl = si | |
398 repl03 : child-replaced key (node key₁ value₁ left right) ≡ left | |
399 repl03 with <-cmp key key₁ | |
400 ... | tri< a1 ¬b ¬c = refl | |
401 ... | tri≈ ¬a b ¬c = ⊥-elim (¬a a) | |
402 ... | tri> ¬a ¬b c = ⊥-elim (¬a a) | |
403 repl02 : child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡ node key₁ value₁ left right | |
404 repl02 with repl09 | <-cmp key key₂ | |
405 ... | refl | tri< a ¬b ¬c = ⊥-elim (¬c lt) | |
689 | 406 ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬c lt) |
688 | 407 ... | refl | tri> ¬a ¬b c = refl |
408 repl04 : node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡ child-replaced key tree1 | |
409 repl04 = begin | |
410 node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡⟨ cong (λ k → node key₁ value₁ k right) repl03 ⟩ | |
411 node key₁ value₁ left right ≡⟨ sym repl02 ⟩ | |
412 child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩ | |
413 child-replaced key tree1 ∎ where open ≡-Reasoning | |
414 repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ repl right) | |
415 repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04 (r-left a (replacePR.ri Pre)) | |
687 | 416 ... | s-left {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where |
688 | 417 repl09 : tree1 ≡ node key₂ v1 (node key₁ value₁ left right) tree₁ |
683 | 418 repl09 = si-property1 si |
419 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) | |
420 repl10 with si-property1 si | |
421 ... | refl = si | |
687 | 422 repl03 : child-replaced key (node key₁ value₁ left right) ≡ left |
423 repl03 with <-cmp key key₁ | |
424 ... | tri< a1 ¬b ¬c = refl | |
425 ... | tri≈ ¬a b ¬c = ⊥-elim (¬a a) | |
426 ... | tri> ¬a ¬b c = ⊥-elim (¬a a) | |
427 repl02 : child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡ node key₁ value₁ left right | |
428 repl02 with repl09 | <-cmp key key₂ | |
429 ... | refl | tri< a ¬b ¬c = refl | |
430 ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬a lt) | |
431 ... | refl | tri> ¬a ¬b c = ⊥-elim (¬a lt) | |
432 repl04 : node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡ child-replaced key tree1 | |
433 repl04 = begin | |
434 node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡⟨ cong (λ k → node key₁ value₁ k right) repl03 ⟩ | |
435 node key₁ value₁ left right ≡⟨ sym repl02 ⟩ | |
436 child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩ | |
437 child-replaced key tree1 ∎ where open ≡-Reasoning | |
438 repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ repl right) | |
439 repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04 (r-left a (replacePR.ri Pre)) | |
705 | 440 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st Post ≤-refl where |
690 | 441 Post : replacePR key value tree1 (node key₁ value left right ) (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤) |
442 Post with replacePR.si Pre | |
691 | 443 ... | s-right {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 b ; ci = lift tt } where |
690 | 444 repl09 : tree1 ≡ node key₂ v1 tree₁ tree -- (node key₁ value₁ left right) |
445 repl09 = si-property1 si | |
446 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) | |
447 repl10 with si-property1 si | |
448 ... | refl = si | |
449 repl07 : child-replaced key (node key₂ v1 tree₁ tree) ≡ tree | |
450 repl07 with <-cmp key key₂ | |
451 ... | tri< a ¬b ¬c = ⊥-elim (¬c x) | |
452 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c x) | |
453 ... | tri> ¬a ¬b c = refl | |
691 | 454 repl12 : (key ≡ key₁) → replacedTree key value (child-replaced key tree1 ) (node key₁ value left right ) |
455 repl12 refl with repl09 | |
456 ... | refl = subst (λ k → replacedTree key value k (node key₁ value left right )) (sym repl07) r-node | |
457 ... | s-left {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 b ; ci = lift tt } where | |
690 | 458 repl09 : tree1 ≡ node key₂ v1 tree tree₁ |
459 repl09 = si-property1 si | |
460 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) | |
461 repl10 with si-property1 si | |
462 ... | refl = si | |
463 repl07 : child-replaced key (node key₂ v1 tree tree₁ ) ≡ tree | |
464 repl07 with <-cmp key key₂ | |
465 ... | tri< a ¬b ¬c = refl | |
466 ... | tri≈ ¬a b ¬c = ⊥-elim (¬a x) | |
467 ... | tri> ¬a ¬b c = ⊥-elim (¬a x) | |
691 | 468 repl12 : (key ≡ key₁) → replacedTree key value (child-replaced key tree1 ) (node key₁ value left right ) |
469 repl12 refl with repl09 | |
470 ... | refl = subst (λ k → replacedTree key value k (node key₁ value left right )) (sym repl07) r-node | |
690 | 471 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st Post ≤-refl where |
472 Post : replacePR key value tree1 (node key₁ value₁ left repl ) st (λ _ _ _ → Lift n ⊤) | |
473 Post with replacePR.si Pre | |
474 ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where | |
475 repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) | |
476 repl09 = si-property1 si | |
477 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) | |
478 repl10 with si-property1 si | |
479 ... | refl = si | |
480 repl03 : child-replaced key (node key₁ value₁ left right) ≡ right | |
481 repl03 with <-cmp key key₁ | |
482 ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c) | |
483 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c) | |
484 ... | tri> ¬a ¬b c = refl | |
485 repl02 : child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡ node key₁ value₁ left right | |
486 repl02 with repl09 | <-cmp key key₂ | |
487 ... | refl | tri< a ¬b ¬c = ⊥-elim (¬c lt) | |
488 ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬c lt) | |
489 ... | refl | tri> ¬a ¬b c = refl | |
490 repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1 | |
491 repl04 = begin | |
492 node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩ | |
493 node key₁ value₁ left right ≡⟨ sym repl02 ⟩ | |
494 child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩ | |
495 child-replaced key tree1 ∎ where open ≡-Reasoning | |
496 repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ left repl) | |
497 repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04 (r-right c (replacePR.ri Pre)) | |
498 ... | s-left {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where | |
499 repl09 : tree1 ≡ node key₂ v1 (node key₁ value₁ left right) tree₁ | |
500 repl09 = si-property1 si | |
501 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) | |
502 repl10 with si-property1 si | |
503 ... | refl = si | |
504 repl03 : child-replaced key (node key₁ value₁ left right) ≡ right | |
505 repl03 with <-cmp key key₁ | |
506 ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c) | |
507 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c) | |
508 ... | tri> ¬a ¬b c = refl | |
509 repl02 : child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡ node key₁ value₁ left right | |
510 repl02 with repl09 | <-cmp key key₂ | |
511 ... | refl | tri< a ¬b ¬c = refl | |
512 ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬a lt) | |
513 ... | refl | tri> ¬a ¬b c = ⊥-elim (¬a lt) | |
514 repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1 | |
515 repl04 = begin | |
516 node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩ | |
517 node key₁ value₁ left right ≡⟨ sym repl02 ⟩ | |
518 child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩ | |
519 child-replaced key tree1 ∎ where open ≡-Reasoning | |
520 repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ left repl) | |
521 repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04 (r-right c (replacePR.ri Pre)) | |
644 | 522 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
523 TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
524 → (r : Index) → (p : Invraiant r) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
525 → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → t |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
526 TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
527 ... | tri≈ ¬a b ¬c = loop r p (λ r1 p1 lt → ⊥-elim (lemma3 b lt) ) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
528 ... | tri< a ¬b ¬c = loop r p (λ r1 p1 lt1 → TerminatingLoop1 (reduce r) r r1 (≤-step lt1) p1 lt1 ) where |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
529 TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j → Invraiant r1 → reduce r1 < reduce r → t |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
530 TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 p1 (λ r2 p1 lt1 → ⊥-elim (lemma5 n≤j lt1)) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
531 TerminatingLoop1 (suc j) r r1 n≤j p1 lt with <-cmp (reduce r1) (suc j) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
532 ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
533 ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 ) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
534 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c n≤j ) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
535 |
706 | 536 record ReplCond {n : Level} {A : Set n} (C : ℕ → bt A → List (bt A) → Set n) : Set (Level.suc n) where |
537 field | |
538 c1 : (key : ℕ) → (repl : bt A) → (stack : List (bt A)) → C key repl stack | |
539 | |
540 replaceP0 : {n m : Level} {A : Set n} {t : Set m} | |
541 → (key : ℕ) → (value : A) → ( repl : bt A) | |
542 → (stack : List (bt A)) | |
543 → {C : ℕ → (repl : bt A ) → List (bt A) → Set n} → C key repl stack → ReplCond C | |
544 → (next : ℕ → A → (repl : bt A) → (stack1 : List (bt A)) | |
545 → C key repl stack → length stack1 < length stack → t) | |
546 → (exit : (repl : bt A) → C key repl [] → t) → t | |
547 replaceP0 key value repl [] Pre _ next exit = exit repl {!!} | |
548 replaceP0 key value repl (leaf ∷ []) Pre _ next exit = exit (node key value leaf leaf) {!!} | |
549 replaceP0 key value repl (node key₁ value₁ left right ∷ []) Pre e next exit with <-cmp key key₁ | |
550 ... | tri< a ¬b ¬c = exit (node key₁ value₁ repl right ) {!!} | |
551 ... | tri≈ ¬a b ¬c = exit repl {!!} | |
552 ... | tri> ¬a ¬b c = exit (node key₁ value₁ left repl ) {!!} | |
553 replaceP0 {n} {_} {A} key value repl (leaf ∷ st@(tree1 ∷ st1)) Pre e next exit = next key value repl st {!!} ≤-refl | |
554 replaceP0 {n} {_} {A} key value repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre e next exit with <-cmp key key₁ | |
555 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st {!!} ≤-refl | |
556 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st {!!} ≤-refl | |
557 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st {!!} ≤-refl | |
558 | |
559 | |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
560 open _∧_ |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
561 |
615 | 562 RTtoTI0 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
563 → replacedTree key value tree repl → treeInvariant repl | |
692 | 564 RTtoTI0 .leaf .(node key value leaf leaf) key value ti r-leaf = t-single key value |
565 RTtoTI0 .(node key _ leaf leaf) .(node key value leaf leaf) key value (t-single .key _) r-node = t-single key value | |
566 RTtoTI0 .(node key _ leaf (node _ _ _ _)) .(node key value leaf (node _ _ _ _)) key value (t-right x ti) r-node = t-right x ti | |
567 RTtoTI0 .(node key _ (node _ _ _ _) leaf) .(node key value (node _ _ _ _) leaf) key value (t-left x ti) r-node = t-left x ti | |
568 RTtoTI0 .(node key _ (node _ _ _ _) (node _ _ _ _)) .(node key value (node _ _ _ _) (node _ _ _ _)) key value (t-node x x₁ ti ti₁) r-node = t-node x x₁ ti ti₁ | |
701 | 569 -- r-right case |
692 | 570 RTtoTI0 (node _ _ leaf leaf) (node _ _ leaf .(node key value leaf leaf)) key value (t-single _ _) (r-right x r-leaf) = t-right x (t-single key value) |
571 RTtoTI0 (node _ _ leaf right@(node _ _ _ _)) (node key₁ value₁ leaf leaf) key value (t-right x₁ ti) (r-right x ri) = t-single key₁ value₁ | |
693 | 572 RTtoTI0 (node key₁ _ leaf right@(node key₂ _ _ _)) (node key₁ value₁ leaf right₁@(node key₃ _ _ _)) key value (t-right x₁ ti) (r-right x ri) = |
573 t-right (subst (λ k → key₁ < k ) (rt-property-key ri) x₁) (RTtoTI0 _ _ key value ti ri) | |
692 | 574 RTtoTI0 (node key₁ _ (node _ _ _ _) leaf) (node key₁ _ (node key₃ value left right) leaf) key value₁ (t-left x₁ ti) (r-right x ()) |
575 RTtoTI0 (node key₁ _ (node key₃ _ _ _) leaf) (node key₁ _ (node key₃ value₃ _ _) (node key value leaf leaf)) key value (t-left x₁ ti) (r-right x r-leaf) = | |
576 t-node x₁ x ti (t-single key value) | |
693 | 577 RTtoTI0 (node key₁ _ (node _ _ _ _) (node key₂ _ _ _)) (node key₁ _ (node _ _ _ _) (node key₃ _ _ _)) key value (t-node x₁ x₂ ti ti₁) (r-right x ri) = |
578 t-node x₁ (subst (λ k → key₁ < k) (rt-property-key ri) x₂) ti (RTtoTI0 _ _ key value ti₁ ri) | |
701 | 579 -- r-left case |
700 | 580 RTtoTI0 .(node _ _ leaf leaf) .(node _ _ (node key value leaf leaf) leaf) key value (t-single _ _) (r-left x r-leaf) = t-left x (t-single _ _ ) |
701 | 581 RTtoTI0 .(node _ _ leaf (node _ _ _ _)) (node key₁ value₁ (node key value leaf leaf) (node _ _ _ _)) key value (t-right x₁ ti) (r-left x r-leaf) = t-node x x₁ (t-single key value) ti |
582 RTtoTI0 (node key₃ _ (node key₂ _ _ _) leaf) (node key₃ _ (node key₁ value₁ left left₁) leaf) key value (t-left x₁ ti) (r-left x ri) = | |
583 t-left (subst (λ k → k < key₃ ) (rt-property-key ri) x₁) (RTtoTI0 _ _ key value ti ri) -- key₁ < key₃ | |
584 RTtoTI0 (node key₁ _ (node key₂ _ _ _) (node _ _ _ _)) (node key₁ _ (node key₃ _ _ _) (node _ _ _ _)) key value (t-node x₁ x₂ ti ti₁) (r-left x ri) = t-node (subst (λ k → k < key₁ ) (rt-property-key ri) x₁) x₂ (RTtoTI0 _ _ key value ti ri) ti₁ | |
615 | 585 |
586 RTtoTI1 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant repl | |
587 → replacedTree key value tree repl → treeInvariant tree | |
701 | 588 RTtoTI1 .leaf .(node key value leaf leaf) key value ti r-leaf = t-leaf |
589 RTtoTI1 (node key value₁ leaf leaf) .(node key value leaf leaf) key value (t-single .key .value) r-node = t-single key value₁ | |
590 RTtoTI1 .(node key _ leaf (node _ _ _ _)) .(node key value leaf (node _ _ _ _)) key value (t-right x ti) r-node = t-right x ti | |
591 RTtoTI1 .(node key _ (node _ _ _ _) leaf) .(node key value (node _ _ _ _) leaf) key value (t-left x ti) r-node = t-left x ti | |
592 RTtoTI1 .(node key _ (node _ _ _ _) (node _ _ _ _)) .(node key value (node _ _ _ _) (node _ _ _ _)) key value (t-node x x₁ ti ti₁) r-node = t-node x x₁ ti ti₁ | |
593 -- r-right case | |
594 RTtoTI1 (node key₁ value₁ leaf leaf) (node key₁ _ leaf (node _ _ _ _)) key value (t-right x₁ ti) (r-right x r-leaf) = t-single key₁ value₁ | |
595 RTtoTI1 (node key₁ value₁ leaf (node key₂ value₂ t2 t3)) (node key₁ _ leaf (node key₃ _ _ _)) key value (t-right x₁ ti) (r-right x ri) = | |
596 t-right (subst (λ k → key₁ < k ) (sym (rt-property-key ri)) x₁) (RTtoTI1 _ _ key value ti ri) -- key₁ < key₂ | |
597 RTtoTI1 (node _ _ (node _ _ _ _) leaf) (node _ _ (node _ _ _ _) (node key value _ _)) key value (t-node x₁ x₂ ti ti₁) (r-right x r-leaf) = | |
598 t-left x₁ ti | |
599 RTtoTI1 (node key₄ _ (node key₃ _ _ _) (node key₁ value₁ n n₁)) (node key₄ _ (node key₃ _ _ _) (node key₂ _ _ _)) key value (t-node x₁ x₂ ti ti₁) (r-right x ri) = t-node x₁ (subst (λ k → key₄ < k ) (sym (rt-property-key ri)) x₂) ti (RTtoTI1 _ _ key value ti₁ ri) -- key₄ < key₁ | |
600 -- r-left case | |
601 RTtoTI1 (node key₁ value₁ leaf leaf) (node key₁ _ _ leaf) key value (t-left x₁ ti) (r-left x ri) = t-single key₁ value₁ | |
602 RTtoTI1 (node key₁ _ (node key₂ value₁ n n₁) leaf) (node key₁ _ (node key₃ _ _ _) leaf) key value (t-left x₁ ti) (r-left x ri) = | |
603 t-left (subst (λ k → k < key₁ ) (sym (rt-property-key ri)) x₁) (RTtoTI1 _ _ key value ti ri) -- key₂ < key₁ | |
604 RTtoTI1 (node key₁ value₁ leaf _) (node key₁ _ _ _) key value (t-node x₁ x₂ ti ti₁) (r-left x r-leaf) = t-right x₂ ti₁ | |
605 RTtoTI1 (node key₁ value₁ (node key₂ value₂ n n₁) _) (node key₁ _ _ _) key value (t-node x₁ x₂ ti ti₁) (r-left x ri) = | |
606 t-node (subst (λ k → k < key₁ ) (sym (rt-property-key ri)) x₁) x₂ (RTtoTI1 _ _ key value ti ri) ti₁ -- key₂ < key₁ | |
614 | 607 |
611 | 608 insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
696 | 609 → (exit : (tree repl : bt A) → treeInvariant repl ∧ replacedTree key value tree repl → t ) → t |
693 | 610 insertTreeP {n} {m} {A} {t} tree key value P0 exit = |
611 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , tree ∷ [] ⟫ ⟪ P0 , s-single ⟫ | |
696 | 612 $ λ p P loop → findP key (proj1 p) tree (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) |
693 | 613 $ λ t s P C → replaceNodeP key value t C (proj1 P) |
614 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ bt A ∧ bt A ) | |
615 {λ p → replacePR key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) (λ _ _ _ → Lift n ⊤ ) } | |
696 | 616 (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ record { tree0 = tree ; ti = P0 ; si = proj2 P ; ri = R ; ci = lift tt } |
693 | 617 $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) P1 |
696 | 618 (λ key value {tree1} repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) |
619 $ λ tree repl P → exit tree repl ⟪ RTtoTI0 _ _ _ _ (proj1 P) (proj2 P) , proj2 P ⟫ | |
614 | 620 |
696 | 621 insertTestP1 = insertTreeP leaf 1 1 t-leaf |
622 $ λ _ x P → insertTreeP x 2 1 (proj1 P) | |
623 $ λ _ x P → insertTreeP x 3 2 (proj1 P) | |
624 $ λ _ x P → insertTreeP x 2 2 (proj1 P) (λ _ x _ → x ) | |
694 | 625 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
626 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
627 top-value leaf = nothing |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
628 top-value (node key value tree tree₁) = just value |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
629 |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
630 record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : ℕ → bt A → List (bt A) → Set n) : Set n where |
618 | 631 field |
619 | 632 tree0 : bt A |
696 | 633 ti0 : treeInvariant tree0 |
695 | 634 ti : treeInvariant tree |
662 | 635 si : stackInvariant key tree tree0 stack |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
636 ci : C key tree stack -- data continuation |
702 | 637 |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
638 record findExt {n : Level} {A : Set n} (key : ℕ) (C : ℕ → bt A → List (bt A) → Set n) : Set (Level.suc n) where |
702 | 639 field |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
640 c1 : {key₁ : ℕ} {tree tree₁ : bt A } {st : List (bt A)} {v1 : A} |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
641 → findPR key (node key₁ v1 tree tree₁) st C → key < key₁ → C key tree (tree ∷ st) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
642 c2 : {key₁ : ℕ} {tree tree₁ : bt A } {st : List (bt A)} {v1 : A} |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
643 → findPR key (node key₁ v1 tree tree₁) st C → key > key₁ → C key tree₁ (tree₁ ∷ st) |
618 | 644 |
695 | 645 findPP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
646 → {C : ℕ → bt A → List (bt A) → Set n } → findPR key tree stack C → findExt key C |
702 | 647 → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack C → bt-depth tree1 < bt-depth tree → t ) |
648 → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack C | |
695 | 649 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t |
702 | 650 findPP key leaf st Pre _ _ exit = exit leaf st Pre (case1 refl) |
651 findPP key (node key₁ v1 tree tree₁) st Pre _ next exit with <-cmp key key₁ | |
652 findPP key n st Pre _ _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) | |
653 findPP {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre e next _ | tri< a ¬b ¬c = next tree (tree ∷ st) | |
705 | 654 record { tree0 = findPR.tree0 Pre ; ti0 = findPR.ti0 Pre ; ti = treeLeftDown tree tree₁ (findPR.ti Pre) ; si = findP1 a st (findPR.si Pre) ; ci = findExt.c1 e Pre a } depth-1< where |
695 | 655 findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) |
656 (findPR.tree0 Pre) st → stackInvariant key tree (findPR.tree0 Pre) (tree ∷ st) | |
657 findP1 a (x ∷ st) si = s-left a si | |
702 | 658 findPP key n@(node key₁ v1 tree tree₁) st Pre e next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) |
659 record { tree0 = findPR.tree0 Pre ; ti0 = findPR.ti0 Pre ; ti = treeRightDown tree tree₁ (findPR.ti Pre) ; si = s-right c (findPR.si Pre) ; ci = findExt.c2 e Pre c } depth-2< | |
616 | 660 |
618 | 661 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
662 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t | |
695 | 663 insertTreePP {n} {m} {A} {t} tree key value P0 exit = |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
664 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ _ _ _ → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , tree ∷ [] ⟫ |
696 | 665 record { tree0 = tree ; ti = P0 ; ti0 = P0 ;si = s-single ; ci = lift tt } |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
666 $ λ p P loop → findPP key (proj1 p) (proj2 p) P record { c1 = λ _ _ → lift tt ; c2 = λ _ _ → lift tt } (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) |
695 | 667 $ λ t s P C → replaceNodeP key value t C (findPR.ti P) |
668 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ bt A ∧ bt A ) | |
669 {λ p → replacePR key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) (λ _ _ _ → Lift n ⊤ ) } | |
696 | 670 (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ record { tree0 = findPR.tree0 P ; ti = findPR.ti0 P ; si = findPR.si P ; ri = R ; ci = lift tt } |
695 | 671 $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) P1 |
672 (λ key value {tree1} repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit | |
618 | 673 |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
674 record findPC {n : Level} {A : Set n} (value : A) (key1 : ℕ) (tree : bt A ) (stack : List (bt A)) : Set n where |
616 | 675 field |
676 tree1 : bt A | |
698 | 677 ci : replacedTree key1 value tree1 tree |
616 | 678 |
702 | 679 findPPC1 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A)) |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
680 → findPR key tree stack (findPC value ) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
681 → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC value ) → bt-depth tree1 < bt-depth tree → t ) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
682 → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC value ) |
702 | 683 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t |
684 findPPC1 {n} {_} {A} key value tree stack Pr next exit = findPP key tree stack Pr findext next exit where | |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
685 findext01 : {key₂ : ℕ} {tree₁ : bt A} {tree₂ : bt A} {st : List (bt A)} {v1 : A} |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
686 → (Pre : findPR key (node key₂ v1 tree₁ tree₂) st (findPC value) ) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
687 → key < key₂ → findPC value key tree₁ (tree₁ ∷ st) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
688 findext01 Pre a with findPC.ci (findPR.ci Pre) | findPC.tree1 (findPR.ci Pre) | inspect findPC.tree1 (findPR.ci Pre) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
689 ... | r-leaf | leaf | record { eq = refl } = ⊥-elim ( nat-≤> a ≤-refl) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
690 ... | r-node | node key value t1 t3 | record { eq = refl } = ⊥-elim ( nat-≤> a ≤-refl ) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
691 ... | r-right x t | t1 | t2 = ⊥-elim (nat-<> x a) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
692 ... | r-left x ri | node key value t1 t3 | record { eq = refl } = record { tree1 = t1 ; ci = ri } |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
693 findext02 : {key₂ : ℕ} {tree₁ : bt A} {tree₂ : bt A} {st : List (bt A)} {v1 : A} |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
694 → (Pre : findPR key (node key₂ v1 tree₁ tree₂) st (findPC value) ) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
695 → key > key₂ → findPC value key tree₂ (tree₂ ∷ st) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
696 findext02 Pre c with findPC.ci (findPR.ci Pre) | findPC.tree1 (findPR.ci Pre) | inspect findPC.tree1 (findPR.ci Pre) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
697 ... | r-leaf | leaf | record { eq = refl } = ⊥-elim ( nat-≤> c ≤-refl) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
698 ... | r-node | node key value t1 t3 | record { eq = refl } = ⊥-elim ( nat-≤> c ≤-refl ) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
699 ... | r-left x t | t1 | t2 = ⊥-elim (nat-<> x c) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
700 ... | r-right x ri | node key value t1 t3 | record { eq = refl } = record { tree1 = t3 ; ci = ri } |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
701 findext : findExt key (findPC value ) |
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
702 findext = record { c1 = findext01 ; c2 = findext02 } |
702 | 703 |
704 insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ | |
705 insertTreeSpec0 _ _ _ = tt | |
706 | |
700 | 707 containsTree : {n : Level} {A : Set n} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ |
708 containsTree {n} {A} tree tree1 key value P RT = | |
617 | 709 TerminatingLoopS (bt A ∧ List (bt A) ) |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
710 {λ p → findPR key (proj1 p) (proj2 p) (findPC value ) } (λ p → bt-depth (proj1 p)) |
698 | 711 ⟪ tree , tree ∷ [] ⟫ record { tree0 = tree ; ti0 = RTtoTI0 _ _ _ _ P RT ; ti = RTtoTI0 _ _ _ _ P RT ; si = s-single |
712 ; ci = record { tree1 = tree1 ; ci = RT } } | |
702 | 713 $ λ p P loop → findPPC1 key value (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) |
695 | 714 $ λ t1 s1 P2 found? → insertTreeSpec0 t1 value (lemma6 t1 s1 found? P2) where |
703
23e0b9df7896
embedding invariant extentiion
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
702
diff
changeset
|
715 lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC value )) → top-value t1 ≡ just value |
698 | 716 lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1 (findPR.ci P2)) (findPC.ci (findPR.ci P2)) (findPR.si P2) found? where |
700 | 717 lemma8 : {tree1 t1 : bt A } → replacedTree key value tree1 t1 → node-key t1 ≡ just key → top-value t1 ≡ just value |
718 lemma8 {.leaf} {node key value .leaf .leaf} r-leaf refl = refl | |
719 lemma8 {.(node key _ t1 t2)} {node key value t1 t2} r-node refl = refl | |
720 lemma8 {.(node key value t1 _)} {node key value t1 t2} (r-right x ri) refl = ⊥-elim (¬x<x x) | |
721 lemma8 {.(node key value _ t2)} {node key value t1 t2} (r-left x ri) refl = ⊥-elim (¬x<x x) | |
698 | 722 lemma7 : (t1 : bt A) ( s1 : List (bt A) ) (tree0 tree1 : bt A) |
723 → replacedTree key value tree1 t1 → stackInvariant key t1 tree0 s1 | |
724 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value | |
725 lemma7 .leaf (.leaf ∷ []) .leaf tree1 () s-single (case1 refl) | |
700 | 726 lemma7 (node key value t1 t2) (.(node key value t1 t2) ∷ []) .(node key value t1 t2) tree1 ri s-single (case2 x) = lemma8 ri x |
727 lemma7 (node key value t1 t2) (.(node key value t1 t2) ∷ x₁ ∷ s1) tree0 tree1 ri (s-right x si) (case2 x₂) = lemma8 ri x₂ | |
728 lemma7 (node key value t1 t2) (.(node key value t1 t2) ∷ x₁ ∷ s1) tree0 tree1 ri (s-left x si) (case2 x₂) = lemma8 ri x₂ | |
729 | |
615 | 730 |
700 | 731 containsTree1 : {n : Level} {A : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → ⊤ |
732 containsTree1 {n} {A} tree key value ti = | |
733 insertTreeP tree key value ti | |
702 | 734 $ λ tree0 tree1 P → containsTree tree1 tree0 key value (RTtoTI1 _ _ _ _ (proj1 P) (proj2 P) ) (proj2 P) |
700 | 735 |
736 |