annotate hoareBinaryTree.agda @ 692:9f1ccc8a0e1d

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 01 Dec 2021 23:04:55 +0900 (2021-12-01)
parents ca624203b453
children 49dd82f49fa1
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
1 module hoareBinaryTree where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
2
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
3 open import Level renaming (zero to Z ; suc to succ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
4
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
5 open import Data.Nat hiding (compare)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
6 open import Data.Nat.Properties as NatProp
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
7 open import Data.Maybe
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
8 -- open import Data.Maybe.Properties
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
9 open import Data.Empty
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
10 open import Data.List
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
11 open import Data.Product
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
12
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
13 open import Function as F hiding (const)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
14
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
15 open import Relation.Binary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
16 open import Relation.Binary.PropositionalEquality
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
17 open import Relation.Nullary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
18 open import logic
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
19
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
20
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
21 _iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
22 d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d))
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
23
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
24 iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
25 iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ }
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
26
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
27 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
28 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
29 -- no children , having left node , having right node , having both
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
30 --
597
ryokka
parents: 596
diff changeset
31 data bt {n : Level} (A : Set n) : Set n where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
32 leaf : bt A
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
33 node : (key : ℕ) → (value : A) →
610
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
34 (left : bt A ) → (right : bt A ) → bt A
600
016a8deed93d fix old binary tree
ryokka
parents: 597
diff changeset
35
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
36 node-key : {n : Level} {A : Set n} → bt A → Maybe ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
37 node-key (node key _ _ _) = just key
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
38 node-key _ = nothing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
39
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
40 node-value : {n : Level} {A : Set n} → bt A → Maybe A
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
41 node-value (node _ value _ _) = just value
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
42 node-value _ = nothing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
43
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
44 bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
45 bt-depth leaf = 0
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
46 bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ ))
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
47
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
48 find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A)
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
49 → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
50 find key leaf st _ exit = exit leaf st
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
51 find key (node key₁ v1 tree tree₁) st next exit with <-cmp key key₁
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
52 find key n st _ exit | tri≈ ¬a b ¬c = exit n st
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
53 find key n@(node key₁ v1 tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
54 find key n@(node key₁ v1 tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st)
597
ryokka
parents: 596
diff changeset
55
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
56 {-# TERMINATING #-}
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
57 find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
58 find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
59 find-loop1 : bt A → List (bt A) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
60 find-loop1 tree st = find key tree st find-loop1 exit
600
016a8deed93d fix old binary tree
ryokka
parents: 597
diff changeset
61
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
62 replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
63 replaceNode k v1 leaf next = next (node k v1 leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
64 replaceNode k v1 (node key value t t₁) next = next (node k v1 t t₁)
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
65
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
66 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
67 replace key value repl [] next exit = exit repl -- can't happen
690
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
68 replace key value repl (leaf ∷ []) next exit = exit repl
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
69 replace key value repl (node key₁ value₁ left right ∷ []) next exit with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
70 ... | tri< a ¬b ¬c = exit (node key₁ value₁ repl right )
664
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
71 ... | tri≈ ¬a b ¬c = exit (node key₁ value left right )
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
72 ... | tri> ¬a ¬b c = exit (node key₁ value₁ left repl )
690
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
73 replace key value repl (leaf ∷ st) next exit = next key value repl st
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
74 replace key value repl (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
75 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
76 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
77 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
78
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
79 {-# TERMINATING #-}
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
80 replace-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (exit : bt A → t) → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
81 replace-loop {_} {_} {A} {t} key value tree st exit = replace-loop1 key value tree st where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
82 replace-loop1 : (key : ℕ) → (value : A) → bt A → List (bt A) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
83 replace-loop1 key value tree st = replace key value tree st replace-loop1 exit
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
84
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
85 insertTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
86 insertTree tree key value exit = find-loop key tree ( tree ∷ [] ) $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
87
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
88 insertTest1 = insertTree leaf 1 1 (λ x → x )
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
89 insertTest2 = insertTree insertTest1 2 1 (λ x → x )
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
90 insertTest3 = insertTree insertTest2 3 2 (λ x → x )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 668
diff changeset
91 insertTest4 = insertTree insertTest3 2 2 (λ x → x )
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
92
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
93 open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_)
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
94
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
95 data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
96 t-leaf : treeInvariant leaf
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
97 t-single : (key : ℕ) → (value : A) → treeInvariant (node key value leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
98 t-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key₁ value₁ t₁ t₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
99 → treeInvariant (node key value leaf (node key₁ value₁ t₁ t₂))
692
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
100 t-left : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key value t₁ t₂)
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
101 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) leaf )
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
102 t-node : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} → (key < key₁) → (key₁ < key₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
103 → treeInvariant (node key value t₁ t₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
104 → treeInvariant (node key₂ value₂ t₃ t₄)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
105 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄))
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
106
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
107 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
108 -- stack always contains original top at end
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
109 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
110 data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (top orig : bt A) → (stack : List (bt A)) → Set n where
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
111 s-single : {tree0 : bt A} → stackInvariant key tree0 tree0 (tree0 ∷ [])
653
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
112 s-right : {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)}
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
113 → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree tree0 (tree ∷ st)
653
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 652
diff changeset
114 s-left : {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)}
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
115 → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree₁ tree0 (tree₁ ∷ st)
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
116
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
117 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt A ) → Set n where
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
118 r-leaf : replacedTree key value leaf (node key value leaf leaf)
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
119 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁)
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
120 r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A}
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
121 → k < key → replacedTree key value t2 t → replacedTree key value (node k v1 t1 t2) (node k v1 t1 t)
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
122 r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A}
687
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
123 → key < k → replacedTree key value t1 t → replacedTree key value (node k v1 t1 t2) (node k v1 t t2)
652
8c7446829b99 new stack invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 651
diff changeset
124
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
125 add< : { i : ℕ } (j : ℕ ) → i < suc i + j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
126 add< {i} j = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
127 suc i ≤⟨ m≤m+n (suc i) j ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
128 suc i + j ∎ where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
129
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
130 treeTest1 : bt ℕ
692
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
131 treeTest1 = node 0 0 leaf (node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf))
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
132 treeTest2 : bt ℕ
692
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
133 treeTest2 = node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf)
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
134
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
135 treeInvariantTest1 : treeInvariant treeTest1
692
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
136 treeInvariantTest1 = t-right (m≤m+n _ 2) (t-node (add< 0) (add< 1) (t-left (add< 0) (t-single 1 7)) (t-single 5 5) )
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
137
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
138 stack-top : {n : Level} {A : Set n} (stack : List (bt A)) → Maybe (bt A)
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
139 stack-top [] = nothing
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
140 stack-top (x ∷ s) = just x
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
141
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
142 stack-last : {n : Level} {A : Set n} (stack : List (bt A)) → Maybe (bt A)
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
143 stack-last [] = nothing
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
144 stack-last (x ∷ []) = just x
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
145 stack-last (x ∷ s) = stack-last s
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
146
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
147 stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] )
692
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
148 stackInvariantTest1 = s-right (add< 3) (s-single )
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
149
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
150 si-property0 : {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → {stack : List (bt A)} → stackInvariant key tree tree0 stack → ¬ ( stack ≡ [] )
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
151 si-property0 (s-single ) ()
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
152 si-property0 (s-right x si) ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
153 si-property0 (s-left x si) ()
665
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 664
diff changeset
154
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
155 si-property1 : {n : Level} {A : Set n} {key : ℕ} {tree tree0 tree1 : bt A} → {stack : List (bt A)} → stackInvariant key tree tree0 (tree1 ∷ stack)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
156 → tree1 ≡ tree
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
157 si-property1 (s-single ) = refl
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
158 si-property1 (s-right _ si) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
159 si-property1 (s-left _ si) = refl
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
160
663
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
161 si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → stackInvariant key tree tree0 stack
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
162 → stack-last stack ≡ just tree0
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
163 si-property-last key t t0 (t ∷ []) (s-single ) = refl
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
164 si-property-last key t t0 (.t ∷ x ∷ st) (s-right _ si ) with si-property1 si
663
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
165 ... | refl = si-property-last key x t0 (x ∷ st) si
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 665
diff changeset
166 si-property-last key t t0 (.t ∷ x ∷ st) (s-left _ si ) with si-property1 si
663
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
167 ... | refl = si-property-last key x t0 (x ∷ st) si
656
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 655
diff changeset
168
642
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
169 ti-right : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 tree₁ repl) → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
170 ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
171 ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-right x ti) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
172 ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-left x ti) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
173 ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
174
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
175 ti-left : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 repl tree₁ ) → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
176 ti-left {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
177 ti-left {_} {_} {_} {_} {key₁} {v1} (t-right x ti) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
178 ti-left {_} {_} {_} {_} {key₁} {v1} (t-left x ti) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
179 ti-left {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 641
diff changeset
180
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
181 stackTreeInvariant : {n : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
182 → treeInvariant tree → stackInvariant key sub tree stack → treeInvariant sub
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
183 stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-single ) = ti
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
184 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si ) = ti-right (si1 si) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
185 si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant (node key₁ v1 tree₁ sub )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
186 si1 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 tree₁ sub ) tree st ti si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
187 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-left _ si ) = ti-left ( si2 si) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
188 si2 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 sub tree₁ ) tree st → treeInvariant (node key₁ v1 sub tree₁ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
189 si2 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 sub tree₁ ) tree st ti si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
190
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
191 rt-property1 : {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf )
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
192 rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf ()
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
193 rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node ()
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
194 rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-right x rt) = λ ()
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
195 rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-left x rt) = λ ()
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
196
690
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
197 rt-property-leaf : {n : Level} {A : Set n} {key : ℕ} {value : A} {repl : bt A} → replacedTree key value leaf repl → repl ≡ node key value leaf leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
198 rt-property-leaf r-leaf = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
199
692
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
200 rt-property-key : {n : Level} {A : Set n} {key key₂ key₃ : ℕ} {value value₂ value₃ : A} {left left₁ right₂ right₃ : bt A}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
201 → replacedTree key value (node key₂ value₂ left right₂) (node key₃ value₃ left₁ right₃) → key₂ ≡ key₃
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
202 rt-property-key r-node = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
203 rt-property-key (r-right x ri) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
204 rt-property-key (r-left x ri) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
205
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
206 depth-1< : {i j : ℕ} → suc i ≤ suc (i Data.Nat.⊔ j )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
207 depth-1< {i} {j} = s≤s (m≤m⊔n _ j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
208
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
209 depth-2< : {i j : ℕ} → suc i ≤ suc (j Data.Nat.⊔ i )
650
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 649
diff changeset
210 depth-2< {i} {j} = s≤s (m≤n⊔m j i)
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
211
649
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
212 depth-3< : {i : ℕ } → suc i ≤ suc (suc i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
213 depth-3< {zero} = s≤s ( z≤n )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
214 depth-3< {suc i} = s≤s (depth-3< {i} )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
216
634
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
217 treeLeftDown : {n : Level} {A : Set n} {k : ℕ} {v1 : A} → (tree tree₁ : bt A )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
218 → treeInvariant (node k v1 tree tree₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
219 → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
220 treeLeftDown {n} {A} {_} {v1} leaf leaf (t-single k1 v1) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
221 treeLeftDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
222 treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
223 treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
225 treeRightDown : {n : Level} {A : Set n} {k : ℕ} {v1 : A} → (tree tree₁ : bt A )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
226 → treeInvariant (node k v1 tree tree₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
227 → treeInvariant tree₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
228 treeRightDown {n} {A} {_} {v1} .leaf .leaf (t-single _ .v1) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
229 treeRightDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
230 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = t-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
231 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
232
664
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
233 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
234 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
235 nat-<> : { x y : ℕ } → x < y → y < x → ⊥
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
236 nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x
633
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 632
diff changeset
237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 632
diff changeset
238 open _∧_
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 632
diff changeset
239
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
240 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A))
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
241 → treeInvariant tree ∧ stackInvariant key tree tree0 stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
242 → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
243 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
244 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
245 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre (case1 refl)
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
246 findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
247 findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl)
664
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
248 findP {n} {_} {A} key (node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st)
663
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
249 ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where
cf5095488bbd stack contains original tree at end always
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 662
diff changeset
250 findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st)
664
1f702351fd1f findP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 663
diff changeset
251 findP1 a (x ∷ st) si = s-left a si
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
252 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2<
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
253
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
254 replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁)
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
255 replaceTree1 k v1 value (t-single .k .v1) = t-single k value
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
256 replaceTree1 k v1 value (t-right x t) = t-right x t
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
257 replaceTree1 k v1 value (t-left x t) = t-left x t
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
258 replaceTree1 k v1 value (t-node x x₁ t t₁) = t-node x x₁ t t₁
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
259
649
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
260 open import Relation.Binary.Definitions
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
261
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
262 lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
263 lemma3 refl ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
264 lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
265 lemma5 (s≤s z≤n) ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 648
diff changeset
266
687
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
267 child-replaced : {n : Level} {A : Set n} (key : ℕ) (tree : bt A) → bt A
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
268 child-replaced key leaf = leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
269 child-replaced key (node key₁ value left right) with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
270 ... | tri< a ¬b ¬c = left
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
271 ... | tri≈ ¬a b ¬c = node key₁ value left right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
272 ... | tri> ¬a ¬b c = right
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
273
671
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
274 record replacePR {n : Level} {A : Set n} (key : ℕ) (value : A) (tree repl : bt A ) (stack : List (bt A)) (C : bt A → bt A → List (bt A) → Set n) : Set n where
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
275 field
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
276 tree0 : bt A
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
277 ti : treeInvariant tree0
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
278 si : stackInvariant key tree tree0 stack
687
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
279 ri : replacedTree key value (child-replaced key tree ) repl
671
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
280 ci : C tree repl stack -- data continuation
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
281
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
282 replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A)
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
283 → (tree ≡ leaf ) ∨ ( node-key tree ≡ just key )
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
284 → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
285 replaceNodeP k v1 leaf C P next = next (node k v1 leaf leaf) (t-single k v1 ) r-leaf
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
286 replaceNodeP k v1 (node .k value t t₁) (case2 refl) P next = next (node k v1 t t₁) (replaceTree1 k value v1 P) r-node
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
287
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
288 replaceP : {n m : Level} {A : Set n} {t : Set m}
671
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
289 → (key : ℕ) → (value : A) → {tree : bt A} ( repl : bt A)
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
290 → (stack : List (bt A)) → replacePR key value tree repl stack (λ _ _ _ → Lift n ⊤)
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
291 → (next : ℕ → A → {tree1 : bt A } (repl : bt A) → (stack1 : List (bt A))
b5fde9727830 use record invariant for replace
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 670
diff changeset
292 → replacePR key value tree1 repl stack1 (λ _ _ _ → Lift n ⊤) → length stack1 < length stack → t)
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
293 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
294 replaceP key value {tree} repl [] Pre next exit = ⊥-elim ( si-property0 (replacePR.si Pre) refl ) -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
295 replaceP key value {tree} repl (leaf ∷ []) Pre next exit with si-property-last _ _ _ _ (replacePR.si Pre)-- tree0 ≡ leaf
677
681577b60c35 child-replaced
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 676
diff changeset
296 ... | refl = exit (replacePR.tree0 Pre) (node key value leaf leaf) ⟪ replacePR.ti Pre , r-leaf ⟫
689
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
297 replaceP key value {tree} repl (node key₁ value₁ left right ∷ []) Pre next exit with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
298 ... | tri< a ¬b ¬c = exit (replacePR.tree0 Pre) (node key₁ value₁ repl right ) ⟪ replacePR.ti Pre , repl01 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
299 repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ repl right )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
300 repl01 with si-property1 (replacePR.si Pre) | si-property-last _ _ _ _ (replacePR.si Pre)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
301 repl01 | refl | refl = subst (λ k → replacedTree key value (node key₁ value₁ k right ) (node key₁ value₁ repl right )) repl02 (r-left a repl03) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
302 repl03 : replacedTree key value ( child-replaced key (node key₁ value₁ left right)) repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
303 repl03 = replacePR.ri Pre
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
304 repl02 : child-replaced key (node key₁ value₁ left right) ≡ left
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
305 repl02 with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
306 ... | tri< a ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
307 ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
308 ... | tri> ¬a ¬b c = ⊥-elim ( ¬a a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
309 ... | tri≈ ¬a b ¬c = exit (replacePR.tree0 Pre) repl ⟪ replacePR.ti Pre , repl01 ⟫ where
678
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 677
diff changeset
310 repl01 : replacedTree key value (replacePR.tree0 Pre) repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 677
diff changeset
311 repl01 with si-property1 (replacePR.si Pre) | si-property-last _ _ _ _ (replacePR.si Pre)
689
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
312 repl01 | refl | refl = subst (λ k → replacedTree key value k repl) repl02 (replacePR.ri Pre) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
313 repl02 : child-replaced key (node key₁ value₁ left right) ≡ node key₁ value₁ left right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
314 repl02 with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
315 ... | tri< a ¬b ¬c = ⊥-elim ( ¬b b)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
316 ... | tri≈ ¬a b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
317 ... | tri> ¬a ¬b c = ⊥-elim ( ¬b b)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
318 ... | tri> ¬a ¬b c = exit (replacePR.tree0 Pre) (node key₁ value₁ left repl ) ⟪ replacePR.ti Pre , repl01 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
319 repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ left repl )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
320 repl01 with si-property1 (replacePR.si Pre) | si-property-last _ _ _ _ (replacePR.si Pre)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
321 repl01 | refl | refl = subst (λ k → replacedTree key value (node key₁ value₁ left k ) (node key₁ value₁ left repl )) repl02 (r-right c repl03) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
322 repl03 : replacedTree key value ( child-replaced key (node key₁ value₁ left right)) repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
323 repl03 = replacePR.ri Pre
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
324 repl02 : child-replaced key (node key₁ value₁ left right) ≡ right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
325 repl02 with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
326 ... | tri< a ¬b ¬c = ⊥-elim ( ¬c c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
327 ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬c c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
328 ... | tri> ¬a ¬b c = refl
690
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
329 replaceP {n} {_} {A} key value {tree} repl (leaf ∷ st@(tree1 ∷ st1)) Pre next exit = next key value repl st Post ≤-refl where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
330 Post : replacePR key value tree1 repl (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
331 Post with replacePR.si Pre
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
332 ... | s-right {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
333 repl09 : tree1 ≡ node key₂ v1 tree₁ leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
334 repl09 = si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
335 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
336 repl10 with si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
337 ... | refl = si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
338 repl07 : child-replaced key (node key₂ v1 tree₁ leaf) ≡ leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
339 repl07 with <-cmp key key₂
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
340 ... | tri< a ¬b ¬c = ⊥-elim (¬c x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
341 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
342 ... | tri> ¬a ¬b c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
343 repl12 : replacedTree key value (child-replaced key tree1 ) repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
344 repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
345 ... | s-left {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
346 repl09 : tree1 ≡ node key₂ v1 leaf tree₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
347 repl09 = si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
348 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
349 repl10 with si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
350 ... | refl = si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
351 repl07 : child-replaced key (node key₂ v1 leaf tree₁ ) ≡ leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
352 repl07 with <-cmp key key₂
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
353 ... | tri< a ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
354 ... | tri≈ ¬a b ¬c = ⊥-elim (¬a x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
355 ... | tri> ¬a ¬b c = ⊥-elim (¬a x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
356 repl12 : replacedTree key value (child-replaced key tree1 ) repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
357 repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf
683
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
358 replaceP {n} {_} {A} key value {tree} repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre next exit with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
359 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st Post ≤-refl where
675
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 671
diff changeset
360 Post : replacePR key value tree1 (node key₁ value₁ repl right ) st (λ _ _ _ → Lift n ⊤)
687
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
361 Post with replacePR.si Pre
688
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
362 ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
363 repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
364 repl09 = si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
365 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
366 repl10 with si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
367 ... | refl = si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
368 repl03 : child-replaced key (node key₁ value₁ left right) ≡ left
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
369 repl03 with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
370 ... | tri< a1 ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
371 ... | tri≈ ¬a b ¬c = ⊥-elim (¬a a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
372 ... | tri> ¬a ¬b c = ⊥-elim (¬a a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
373 repl02 : child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡ node key₁ value₁ left right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
374 repl02 with repl09 | <-cmp key key₂
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
375 ... | refl | tri< a ¬b ¬c = ⊥-elim (¬c lt)
689
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
376 ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬c lt)
688
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
377 ... | refl | tri> ¬a ¬b c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
378 repl04 : node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡ child-replaced key tree1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
379 repl04 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
380 node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡⟨ cong (λ k → node key₁ value₁ k right) repl03 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
381 node key₁ value₁ left right ≡⟨ sym repl02 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
382 child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
383 child-replaced key tree1 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
384 repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ repl right)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
385 repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04 (r-left a (replacePR.ri Pre))
687
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
386 ... | s-left {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
688
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 687
diff changeset
387 repl09 : tree1 ≡ node key₂ v1 (node key₁ value₁ left right) tree₁
683
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
388 repl09 = si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
389 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
390 repl10 with si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 682
diff changeset
391 ... | refl = si
687
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
392 repl03 : child-replaced key (node key₁ value₁ left right) ≡ left
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
393 repl03 with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
394 ... | tri< a1 ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
395 ... | tri≈ ¬a b ¬c = ⊥-elim (¬a a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
396 ... | tri> ¬a ¬b c = ⊥-elim (¬a a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
397 repl02 : child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡ node key₁ value₁ left right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
398 repl02 with repl09 | <-cmp key key₂
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
399 ... | refl | tri< a ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
400 ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬a lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
401 ... | refl | tri> ¬a ¬b c = ⊥-elim (¬a lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
402 repl04 : node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡ child-replaced key tree1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
403 repl04 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
404 node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡⟨ cong (λ k → node key₁ value₁ k right) repl03 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
405 node key₁ value₁ left right ≡⟨ sym repl02 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
406 child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
407 child-replaced key tree1 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
408 repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ repl right)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 686
diff changeset
409 repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04 (r-left a (replacePR.ri Pre))
690
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
410 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st Post ≤-refl where -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
411 Post : replacePR key value tree1 (node key₁ value left right ) (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
412 Post with replacePR.si Pre
691
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
413 ... | s-right {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 b ; ci = lift tt } where
690
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
414 repl09 : tree1 ≡ node key₂ v1 tree₁ tree -- (node key₁ value₁ left right)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
415 repl09 = si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
416 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
417 repl10 with si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
418 ... | refl = si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
419 repl07 : child-replaced key (node key₂ v1 tree₁ tree) ≡ tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
420 repl07 with <-cmp key key₂
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
421 ... | tri< a ¬b ¬c = ⊥-elim (¬c x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
422 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
423 ... | tri> ¬a ¬b c = refl
691
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
424 repl12 : (key ≡ key₁) → replacedTree key value (child-replaced key tree1 ) (node key₁ value left right )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
425 repl12 refl with repl09
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
426 ... | refl = subst (λ k → replacedTree key value k (node key₁ value left right )) (sym repl07) r-node
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
427 ... | s-left {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 b ; ci = lift tt } where
690
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
428 repl09 : tree1 ≡ node key₂ v1 tree tree₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
429 repl09 = si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
430 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
431 repl10 with si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
432 ... | refl = si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
433 repl07 : child-replaced key (node key₂ v1 tree tree₁ ) ≡ tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
434 repl07 with <-cmp key key₂
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
435 ... | tri< a ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
436 ... | tri≈ ¬a b ¬c = ⊥-elim (¬a x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
437 ... | tri> ¬a ¬b c = ⊥-elim (¬a x)
691
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
438 repl12 : (key ≡ key₁) → replacedTree key value (child-replaced key tree1 ) (node key₁ value left right )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
439 repl12 refl with repl09
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 690
diff changeset
440 ... | refl = subst (λ k → replacedTree key value k (node key₁ value left right )) (sym repl07) r-node
690
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
441 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st Post ≤-refl where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
442 Post : replacePR key value tree1 (node key₁ value₁ left repl ) st (λ _ _ _ → Lift n ⊤)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
443 Post with replacePR.si Pre
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
444 ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
445 repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
446 repl09 = si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
447 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
448 repl10 with si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
449 ... | refl = si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
450 repl03 : child-replaced key (node key₁ value₁ left right) ≡ right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
451 repl03 with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
452 ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
453 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
454 ... | tri> ¬a ¬b c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
455 repl02 : child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡ node key₁ value₁ left right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
456 repl02 with repl09 | <-cmp key key₂
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
457 ... | refl | tri< a ¬b ¬c = ⊥-elim (¬c lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
458 ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬c lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
459 ... | refl | tri> ¬a ¬b c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
460 repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
461 repl04 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
462 node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
463 node key₁ value₁ left right ≡⟨ sym repl02 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
464 child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
465 child-replaced key tree1 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
466 repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ left repl)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
467 repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04 (r-right c (replacePR.ri Pre))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
468 ... | s-left {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
469 repl09 : tree1 ≡ node key₂ v1 (node key₁ value₁ left right) tree₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
470 repl09 = si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
471 repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
472 repl10 with si-property1 si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
473 ... | refl = si
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
474 repl03 : child-replaced key (node key₁ value₁ left right) ≡ right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
475 repl03 with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
476 ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
477 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
478 ... | tri> ¬a ¬b c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
479 repl02 : child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡ node key₁ value₁ left right
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
480 repl02 with repl09 | <-cmp key key₂
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
481 ... | refl | tri< a ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
482 ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬a lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
483 ... | refl | tri> ¬a ¬b c = ⊥-elim (¬a lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
484 repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
485 repl04 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
486 node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
487 node key₁ value₁ left right ≡⟨ sym repl02 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
488 child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
489 child-replaced key tree1 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
490 repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ left repl)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 689
diff changeset
491 repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04 (r-right c (replacePR.ri Pre))
644
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
492
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
493 TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
494 → (r : Index) → (p : Invraiant r)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
495 → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
496 TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
497 ... | tri≈ ¬a b ¬c = loop r p (λ r1 p1 lt → ⊥-elim (lemma3 b lt) )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
498 ... | tri< a ¬b ¬c = loop r p (λ r1 p1 lt1 → TerminatingLoop1 (reduce r) r r1 (≤-step lt1) p1 lt1 ) where
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
499 TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j → Invraiant r1 → reduce r1 < reduce r → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
500 TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 p1 (λ r2 p1 lt1 → ⊥-elim (lemma5 n≤j lt1))
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
501 TerminatingLoop1 (suc j) r r1 n≤j p1 lt with <-cmp (reduce r1) (suc j)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
502 ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
503 ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
504 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c n≤j )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
505
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
506 open _∧_
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
507
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
508 RTtoTI0 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
509 → replacedTree key value tree repl → treeInvariant repl
692
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
510 RTtoTI0 .leaf .(node key value leaf leaf) key value ti r-leaf = t-single key value
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
511 RTtoTI0 .(node key _ leaf leaf) .(node key value leaf leaf) key value (t-single .key _) r-node = t-single key value
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
512 RTtoTI0 .(node key _ leaf (node _ _ _ _)) .(node key value leaf (node _ _ _ _)) key value (t-right x ti) r-node = t-right x ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
513 RTtoTI0 .(node key _ (node _ _ _ _) leaf) .(node key value (node _ _ _ _) leaf) key value (t-left x ti) r-node = t-left x ti
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
514 RTtoTI0 .(node key _ (node _ _ _ _) (node _ _ _ _)) .(node key value (node _ _ _ _) (node _ _ _ _)) key value (t-node x x₁ ti ti₁) r-node = t-node x x₁ ti ti₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
515 RTtoTI0 (node _ _ leaf leaf) (node _ _ leaf .(node key value leaf leaf)) key value (t-single _ _) (r-right x r-leaf) = t-right x (t-single key value)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
516 RTtoTI0 (node _ _ leaf right@(node _ _ _ _)) (node key₁ value₁ leaf leaf) key value (t-right x₁ ti) (r-right x ri) = t-single key₁ value₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
517 RTtoTI0 (node key₁ _ leaf right@(node key₂ _ _ _)) (node key₁ value₁ leaf right₁@(node key₃ _ _ _)) key value (t-right x₁ ti) (r-right x ri) = t-right rt2 rt1 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
518 rt2 : key₁ < key₃
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
519 rt2 = subst (λ k → key₁ < k ) (rt-property-key ri) x₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
520 rt1 : treeInvariant right₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
521 rt1 = RTtoTI0 _ _ key value ti ri
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
522 RTtoTI0 (node key₁ _ (node _ _ _ _) leaf) (node key₁ _ (node key₃ value left right) leaf) key value₁ (t-left x₁ ti) (r-right x ())
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
523 RTtoTI0 (node key₁ _ (node key₃ _ _ _) leaf) (node key₁ _ (node key₃ value₃ _ _) (node key value leaf leaf)) key value (t-left x₁ ti) (r-right x r-leaf) =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
524 t-node x₁ x ti (t-single key value)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
525 RTtoTI0 .(node _ _ (node _ _ _ _) (node _ _ _ _)) .(node _ _ (node _ _ _ _) _) key value (t-node x₁ x₂ ti ti₁) (r-right x ri) = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 691
diff changeset
526 RTtoTI0 .(node _ _ _ _) .(node _ _ _ _) key value ti (r-left x ri) = {!!}
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
527
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
528 RTtoTI1 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
529 → replacedTree key value tree repl → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
530 RTtoTI1 = {!!}
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
531
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
532 insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
533 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
610
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
534 insertTreeP {n} {m} {A} {t} tree key value P exit =
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
535 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
536 $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt )
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
537 $ λ t _ s P C → replaceNodeP key value t C (proj1 P)
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
538 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
539 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
540 (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫
644
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
541 $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
542 (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1 ⟫ ⟫ {!!} lt ) exit
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
543
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
544 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
545 top-value leaf = nothing
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
546 top-value (node key value tree tree₁) = just value
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
547
612
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
548 insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
549 insertTreeSpec0 _ _ _ = tt
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
550
627
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
551 record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
552 field
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
553 tree0 : bt A
622
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 621
diff changeset
554 ti : treeInvariant tree0
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
555 si : stackInvariant key tree tree0 stack
631
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 630
diff changeset
556 ci : C tree stack -- data continuation
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
557
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
558 findPP : {n m : Level} {A : Set n} {t : Set m}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
559 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A))
627
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
560 → (Pre : findPR key tree stack (λ t s → Lift n ⊤))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
561 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
562 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → t) → t
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
563 findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
564 findPP key (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
565 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
566 findPP {_} {_} {A} key n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c =
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
567 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
568 tree0 = findPR.tree0 Pre
689
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 688
diff changeset
569 findPP2 : (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ st)
623
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 622
diff changeset
570 findPP2 = {!!}
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
571 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁)
634
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
572 findPP1 = depth-1<
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
573 findPP key n@(node key₁ v1 tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st)
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
574 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁)
634
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
575 findPP2 = depth-2<
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
576
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
577 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
578 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
579 insertTreePP {n} {m} {A} {t} tree key value P exit =
627
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 626
diff changeset
580 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!}
630
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 629
diff changeset
581 $ λ p P loop → findPP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt )
638
be6bd51c3f05 replaceTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 637
diff changeset
582 $ λ t s _ P → replaceNodeP key value t {!!} {!!}
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
583 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
584 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
639
5fe23f540726 replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 638
diff changeset
585 (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫
644
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
586 $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 643
diff changeset
587 (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1 ⟫ ⟫ {!!} lt ) exit
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
588
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
589 record findPC {n : Level} {A : Set n} (key1 : ℕ) (value1 : A) (tree : bt A ) (stack : List (bt A)) : Set n where
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
590 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
591 tree1 : bt A
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
592 ci : replacedTree key1 value1 tree tree1
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
593
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
594 findPPC : {n m : Level} {A : Set n} {t : Set m}
628
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 627
diff changeset
595 → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A))
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
596 → (Pre : findPR key tree stack (findPC key value))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
597 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (findPC key value) → bt-depth tree1 < bt-depth tree → t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
598 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (findPC key value) → t) → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
599 findPPC key value leaf st Pre next exit = exit leaf st (case1 refl) Pre
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
600 findPPC key value (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
601 findPPC key value n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P
632
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 631
diff changeset
602 findPPC {_} {_} {A} key value n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c =
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
603 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = {!!} ; ci = {!!} } ) {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
604 findPPC key value n st P next exit | tri> ¬a ¬b c = {!!}
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
605
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
606 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
607 containsTree {n} {m} {A} {t} tree tree1 key value P RT =
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
608 TerminatingLoopS (bt A ∧ List (bt A) )
634
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
609 {λ p → findPR key (proj1 p) (proj2 p) (findPC key value ) } (λ p → bt-depth (proj1 p)) -- findPR key tree1 [] (findPC key value)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 633
diff changeset
610 ⟪ tree1 , [] ⟫ record { tree0 = tree ; ti = {!!} ; si = {!!} ; ci = record { tree1 = tree ; ci = RT } }
630
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 629
diff changeset
611 $ λ p P loop → findPPC key value (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt )
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
612 $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value (lemma6 t1 s1 found? P2) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
613 lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC key value)) → top-value t1 ≡ just value
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
614 lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1 (findPR.ci P2)) ( findPC.ci (findPR.ci P2)) (findPR.si P2) found? where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
615 lemma7 : (t1 : bt A) ( s1 : List (bt A) ) (tree0 tree1 : bt A) →
662
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 661
diff changeset
616 replacedTree key value t1 tree1 → stackInvariant key t1 tree0 s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 628
diff changeset
617 lemma7 = {!!}
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
618