Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate ordinal-definable.agda @ 58:323b561210b5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 May 2019 23:02:50 +0900 |
parents | 419688a279e0 |
children | d13d1351a1fa |
rev | line source |
---|---|
16 | 1 open import Level |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
2 module ordinal-definable where |
3 | 3 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
4 open import zf |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
5 open import ordinal |
3 | 6 |
23 | 7 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
3 | 8 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
9 open import Relation.Binary.PropositionalEquality |
3 | 10 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
11 open import Data.Nat.Properties |
6 | 12 open import Data.Empty |
13 open import Relation.Nullary | |
14 | |
15 open import Relation.Binary | |
16 open import Relation.Binary.Core | |
17 | |
27 | 18 -- Ordinal Definable Set |
11 | 19 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
20 record OD {n : Level} : Set (suc n) where |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
21 field |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
22 def : (x : Ordinal {n} ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
23 |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
24 open OD |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
25 open import Data.Unit |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
26 |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
27 open Ordinal |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
28 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
29 postulate |
45
33860eb44e47
od∅' {n} = ord→od (o∅ {n})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
44
diff
changeset
|
30 od→ord : {n : Level} → OD {n} → Ordinal {n} |
36 | 31 ord→od : {n : Level} → Ordinal {n} → OD {n} |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
32 |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
33 _∋_ : { n : Level } → ( a x : OD {n} ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
34 _∋_ {n} a x = def a ( od→ord x ) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
35 |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
36 _c<_ : { n : Level } → ( a x : OD {n} ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
37 x c< a = a ∋ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
38 |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
39 record _==_ {n : Level} ( a b : OD {n} ) : Set n where |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
40 field |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
41 eq→ : ∀ { x : Ordinal {n} } → def a x → def b x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
42 eq← : ∀ { x : Ordinal {n} } → def b x → def a x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
43 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
44 id : {n : Level} {A : Set n} → A → A |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
45 id x = x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
46 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
47 eq-refl : {n : Level} { x : OD {n} } → x == x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
48 eq-refl {n} {x} = record { eq→ = id ; eq← = id } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
49 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
50 open _==_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
51 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
52 eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
53 eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
54 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
55 eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
56 eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
57 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
58 _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
59 a c≤ b = (a ≡ b) ∨ ( b ∋ a ) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
60 |
40 | 61 od∅ : {n : Level} → OD {n} |
62 od∅ {n} = record { def = λ _ → Lift n ⊥ } | |
63 | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
64 postulate |
36 | 65 c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y |
66 o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
67 oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
68 diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
69 sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
70 sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → ψ x c< sup-od ψ |
40 | 71 ∅-base-def : {n : Level} → def ( ord→od (o∅ {n}) ) ≡ def (od∅ {n}) |
46 | 72 |
73 o∅→od∅ : {n : Level} → ord→od (o∅ {n}) ≡ od∅ {n} | |
74 o∅→od∅ {n} = cong ( λ k → record { def = k }) ( ∅-base-def ) | |
75 | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
76 ∅1 : {n : Level} → ( x : OD {n} ) → ¬ ( x c< od∅ {n} ) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
77 ∅1 {n} x (lift ()) |
28 | 78 |
37 | 79 ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n} |
80 ∅3 {n} {x} = TransFinite {n} c1 c2 c3 x where | |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
81 c0 : Nat → Ordinal {n} → Set n |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
82 c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x)) → x ≡ o∅ {n} |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
83 c1 : ∀ (lx : Nat ) → c0 lx (record { lv = Suc lx ; ord = ℵ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
84 c1 lx not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
85 ... | t with t (case1 ≤-refl ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
86 c1 lx not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
87 c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
88 c2 Zero not = refl |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
89 c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
90 ... | t with t (case1 ≤-refl ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
91 c2 (Suc lx) not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
92 c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ }) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
93 c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
94 ... | t with t (case2 Φ< ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
95 c3 lx (Φ .lx) d not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
96 c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } ) |
34 | 97 ... | t with t (case2 (s< s<refl ) ) |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
98 c3 lx (OSuc .lx x₁) d not | t | () |
34 | 99 c3 (Suc lx) (ℵ lx) d not with not ( record { lv = Suc lx ; ord = OSuc (Suc lx) (Φ (Suc lx)) } ) |
41 | 100 ... | t with t (case2 (s< ℵΦ< )) |
34 | 101 c3 .(Suc lx) (ℵ lx) d not | t | () |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
102 |
36 | 103 def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x |
104 def-subst df refl refl = df | |
105 | |
106 transitive : {n : Level } { x y z : OD {n} } → y ∋ x → z ∋ y → z ∋ x | |
107 transitive {n} {x} {y} {z} x∋y z∋y with ordtrans ( c<→o< {n} {x} {y} x∋y ) ( c<→o< {n} {y} {z} z∋y ) | |
108 ... | t = lemma0 (lemma t) where | |
109 lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) | |
110 lemma xo<z = o<→c< xo<z | |
111 lemma0 : def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) → def z (od→ord x) | |
112 lemma0 dz = def-subst {n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso) | |
113 | |
41 | 114 record Minimumo {n : Level } (x : Ordinal {n}) : Set (suc n) where |
115 field | |
116 mino : Ordinal {n} | |
117 min<x : mino o< x | |
118 | |
119 ominimal : {n : Level} → (x : Ordinal {n} ) → o∅ o< x → Minimumo {n} x | |
37 | 120 ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case1 ()) |
121 ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case2 ()) | |
122 ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case1 ()) | |
41 | 123 ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case2 Φ<) = record { mino = record { lv = Zero ; ord = Φ 0 } ; min<x = case2 Φ< } |
124 ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case1 (s≤s x)) = record { mino = record { lv = lv ; ord = Φ lv } ; min<x = case1 (s≤s ≤-refl)} | |
37 | 125 ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case2 ()) |
41 | 126 ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case1 (s≤s x)) = record { mino = record { lv = (Suc lv) ; ord = ord } ; min<x = case2 s<refl} |
37 | 127 ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case2 ()) |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
128 ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case1 (s≤s z≤n)) = record { mino = record { lv = Suc lx ; ord = Φ (Suc lx) } ; min<x = case2 ℵΦ< } |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
129 ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case2 ()) |
37 | 130 |
57 | 131 ∅5 : {n : Level} → { x : Ordinal {n} } → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x |
132 ∅5 {n} {record { lv = Zero ; ord = (Φ .0) }} not = ⊥-elim (not refl) | |
133 ∅5 {n} {record { lv = Zero ; ord = (OSuc .0 ord) }} not = case2 Φ< | |
134 ∅5 {n} {record { lv = (Suc lv) ; ord = ord }} not = case1 (s≤s z≤n) | |
37 | 135 |
39 | 136 ∅8 : {n : Level} → ( x : Ordinal {n} ) → ¬ x o< o∅ {n} |
137 ∅8 {n} x (case1 ()) | |
138 ∅8 {n} x (case2 ()) | |
139 | |
46 | 140 ord-iso : {n : Level} {y : Ordinal {n} } → record { lv = lv (od→ord (ord→od y)) ; ord = ord (od→ord (ord→od y)) } ≡ record { lv = lv y ; ord = ord y } |
141 ord-iso = cong ( λ k → record { lv = lv k ; ord = ord k } ) diso | |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
142 |
51 | 143 -- avoiding lv != Zero error |
144 orefl : {n : Level} → { x : OD {n} } → { y : Ordinal {n} } → od→ord x ≡ y → od→ord x ≡ y | |
145 orefl refl = refl | |
146 | |
147 ==-iso : {n : Level} → { x y : OD {n} } → ord→od (od→ord x) == ord→od (od→ord y) → x == y | |
148 ==-iso {n} {x} {y} eq = record { | |
149 eq→ = λ d → lemma ( eq→ eq (def-subst d (sym oiso) refl )) ; | |
150 eq← = λ d → lemma ( eq← eq (def-subst d (sym oiso) refl )) } | |
151 where | |
152 lemma : {x : OD {n} } {z : Ordinal {n}} → def (ord→od (od→ord x)) z → def x z | |
153 lemma {x} {z} d = def-subst d oiso refl | |
154 | |
57 | 155 =-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y) |
156 =-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso) | |
157 | |
51 | 158 ord→== : {n : Level} → { x y : OD {n} } → od→ord x ≡ od→ord y → x == y |
159 ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where | |
160 lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy → (ord→od ox) == (ord→od oy) | |
161 lemma ox ox refl = eq-refl | |
162 | |
163 o≡→== : {n : Level} → { x y : Ordinal {n} } → x ≡ y → ord→od x == ord→od y | |
164 o≡→== {n} {x} {.x} refl = eq-refl | |
165 | |
166 ∅7 : {n : Level} → { x : OD {n} } → od→ord x ≡ o∅ {n} → x == od∅ {n} | |
167 ∅7 {n} {x} eq = record { eq→ = e1 (orefl eq) ; eq← = e2 } where | |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
168 e2 : {y : Ordinal {n}} → def od∅ y → def x y |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
169 e2 {y} (lift ()) |
46 | 170 e1 : {ox y : Ordinal {n}} → ox ≡ o∅ {n} → def x y → def od∅ y |
51 | 171 e1 {o∅} {y} refl x>y = lift ( ∅8 y (o<-subst (c<→o< {n} {ord→od y} {x} (def-subst {n} {x} {y} x>y refl (sym diso))) ord-iso eq )) |
172 | |
173 =→¬< : {x : Nat } → ¬ ( x < x ) | |
174 =→¬< {Zero} () | |
175 =→¬< {Suc x} (s≤s lt) = =→¬< lt | |
176 | |
177 >→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) | |
178 >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x | |
179 | |
180 c≤-refl : {n : Level} → ( x : OD {n} ) → x c≤ x | |
181 c≤-refl x = case1 refl | |
182 | |
183 o<> : {n : Level } ( ox oy : Ordinal {n}) → ox o< oy → oy o< ox → ⊥ | |
184 o<> ox oy (case1 x<y) (case1 y<x) = >→¬< x<y y<x | |
185 o<> ox oy (case1 x<y) (case2 y<x) with d<→lv y<x | |
186 ... | refl = =→¬< x<y | |
187 o<> ox oy (case2 x<y) (case1 y<x) with d<→lv x<y | |
188 ... | refl = =→¬< y<x | |
189 o<> ox oy (case2 x<y) (case2 y<x) with d<→lv x<y | |
190 ... | refl = trio<> x<y y<x | |
191 | |
54 | 192 o<¬≡ : {n : Level } ( ox oy : Ordinal {n}) → ox ≡ oy → ox o< oy → ⊥ |
51 | 193 o<¬≡ ox ox refl (case1 lt) = =→¬< lt |
194 o<¬≡ ox ox refl (case2 (s< lt)) = trio<≡ refl lt | |
195 | |
54 | 196 o<→o> : {n : Level} → { x y : OD {n} } → (x == y) → (od→ord x ) o< ( od→ord y) → ⊥ |
52 | 197 o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with |
198 yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case1 lt )) oiso diso ) | |
199 ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) | |
200 ... | () | |
201 o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with | |
202 yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case2 lt )) oiso diso ) | |
203 ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) | |
204 ... | () | |
205 | |
51 | 206 o<→¬== : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (x == y ) |
52 | 207 o<→¬== {n} {x} {y} lt eq = o<→o> eq lt |
51 | 208 |
209 o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) | |
210 o<→¬c> {n} {x} {y} olt clt = o<> (od→ord x) (od→ord y) olt (c<→o< clt ) where | |
211 | |
212 o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y | |
213 o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (od→ord x) (od→ord y) (orefl oeq ) (c<→o< lt) | |
214 | |
215 tri-c< : {n : Level} → Trichotomous _==_ (_c<_ {suc n}) | |
216 tri-c< {n} x y with trio< {n} (od→ord x) (od→ord y) | |
217 tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst (o<→c< a) oiso diso) (o<→¬== a) ( o<→¬c> a ) | |
218 tri-c< {n} x y | tri≈ ¬a b ¬c = tri≈ (o≡→¬c< b) (ord→== b) (o≡→¬c< (sym b)) | |
219 tri-c< {n} x y | tri> ¬a ¬b c = tri> ( o<→¬c> c) (λ eq → o<→¬== c (eq-sym eq ) ) (def-subst (o<→c< c) oiso diso) | |
220 | |
54 | 221 c<> : {n : Level } { x y : OD {suc n}} → x c< y → y c< x → ⊥ |
222 c<> {n} {x} {y} x<y y<x with tri-c< x y | |
223 c<> {n} {x} {y} x<y y<x | tri< a ¬b ¬c = ¬c y<x | |
224 c<> {n} {x} {y} x<y y<x | tri≈ ¬a b ¬c = o<→o> b ( c<→o< x<y ) | |
225 c<> {n} {x} {y} x<y y<x | tri> ¬a ¬b c = ¬a x<y | |
226 | |
51 | 227 ∅2 : {n : Level} → { x : OD {n} } → o∅ {n} o< od→ord x → ¬ ( x == od∅ {n} ) |
228 ∅2 {n} {x} lt record { eq→ = eq→ ; eq← = eq← } with ominimal (od→ord x ) lt | |
229 ... | min with eq→ ( def-subst (o<→c< (Minimumo.min<x min)) oiso refl ) | |
230 ... | () | |
231 | |
57 | 232 ∅0 : {n : Level} → { x : Ordinal {n} } → o∅ {n} o< x → ¬ ( ord→od x == od∅ {n} ) |
233 ∅0 {n} {x} lt record { eq→ = eq→ ; eq← = eq← } with ominimal x lt | |
234 ... | min with eq→ (o<→c< (Minimumo.min<x min)) | |
235 ... | () | |
236 | |
51 | 237 |
238 is-od∅ : {n : Level} → ( x : OD {suc n} ) → Dec ( x == od∅ {suc n} ) | |
239 is-od∅ {n} x with trio< {n} (od→ord x) (o∅ {suc n}) | |
240 is-od∅ {n} x | tri≈ ¬a b ¬c = yes ( ∅7 (orefl b) ) | |
241 is-od∅ {n} x | tri< (case1 ()) ¬b ¬c | |
242 is-od∅ {n} x | tri< (case2 ()) ¬b ¬c | |
243 is-od∅ {n} x | tri> ¬a ¬b c = no ( ∅2 c ) | |
46 | 244 |
53 | 245 is-∋ : {n : Level} → ( x y : OD {suc n} ) → Dec ( x ∋ y ) |
246 is-∋ {n} x y with tri-c< x y | |
247 is-∋ {n} x y | tri< a ¬b ¬c = no ¬c | |
248 is-∋ {n} x y | tri≈ ¬a b ¬c = no ¬c | |
249 is-∋ {n} x y | tri> ¬a ¬b c = yes c | |
250 | |
57 | 251 is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) |
252 is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl | |
253 is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) | |
254 is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) | |
255 | |
45
33860eb44e47
od∅' {n} = ord→od (o∅ {n})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
44
diff
changeset
|
256 open _∧_ |
33860eb44e47
od∅' {n} = ord→od (o∅ {n})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
44
diff
changeset
|
257 |
57 | 258 ∅9 : {n : Level} → {x : OD {n} } → ¬ x == od∅ → o∅ o< od→ord x |
259 ∅9 {_} {x} not = ∅5 lemma where | |
38 | 260 lemma : ¬ od→ord x ≡ o∅ |
51 | 261 lemma eq = not ( ∅7 eq ) |
37 | 262 |
54 | 263 OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} |
40 | 264 OD→ZF {n} = record { |
54 | 265 ZFSet = OD {suc n} |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
266 ; _∋_ = _∋_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
267 ; _≈_ = _==_ |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
268 ; ∅ = od∅ |
28 | 269 ; _,_ = _,_ |
270 ; Union = Union | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
271 ; Power = Power |
28 | 272 ; Select = Select |
273 ; Replace = Replace | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
274 ; infinite = record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero } } |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
275 ; isZF = isZF |
28 | 276 } where |
54 | 277 Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
278 Replace X ψ = sup-od ψ |
54 | 279 Select : OD {suc n} → (OD {suc n} → Set (suc n) ) → OD {suc n} |
280 Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } | |
281 _,_ : OD {suc n} → OD {suc n} → OD {suc n} | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
282 x , y = record { def = λ z → ( (z ≡ od→ord x ) ∨ ( z ≡ od→ord y )) } |
54 | 283 Union : OD {suc n} → OD {suc n} |
284 Union x = record { def = λ y → {z : Ordinal {suc n}} → def x z → def (ord→od z) y } | |
285 Power : OD {suc n} → OD {suc n} | |
286 Power x = record { def = λ y → (z : Ordinal {suc n} ) → ( def x y ∧ def (ord→od z) y ) } | |
287 ZFSet = OD {suc n} | |
288 _∈_ : ( A B : ZFSet ) → Set (suc n) | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
289 A ∈ B = B ∋ A |
54 | 290 _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
291 _⊆_ A B {x} = A ∋ x → B ∋ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
292 _∩_ : ( A B : ZFSet ) → ZFSet |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
293 A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
294 _∪_ : ( A B : ZFSet ) → ZFSet |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
295 A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
296 infixr 200 _∈_ |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
297 infixr 230 _∩_ _∪_ |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
298 infixr 220 _⊆_ |
54 | 299 isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero } }) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
300 isZF = record { |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
301 isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
302 ; pair = pair |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
303 ; union→ = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
304 ; union← = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
305 ; empty = empty |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
306 ; power→ = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
307 ; power← = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
308 ; extentionality = {!!} |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
309 ; minimul = minimul |
51 | 310 ; regularity = regularity |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
311 ; infinity∅ = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
312 ; infinity = {!!} |
55
9c0a5e28a572
regurality elimination case
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
313 ; selection = λ {ψ} {X} {y} → selection {ψ} {X} {y} |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
314 ; replacement = {!!} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
315 } where |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
316 open _∧_ |
41 | 317 open Minimumo |
54 | 318 pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
319 proj1 (pair A B ) = case1 refl |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
320 proj2 (pair A B ) = case2 refl |
54 | 321 empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
322 empty x () |
54 | 323 union→ : (X x y : OD {suc n} ) → (X ∋ x) → (x ∋ y) → (Union X ∋ y) |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
324 union→ X x y X∋x x∋y = {!!} where |
54 | 325 lemma : {z : Ordinal {suc n} } → def X z → z ≡ od→ord y |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
326 lemma {z} X∋z = {!!} |
54 | 327 ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y |
328 ψiso {ψ} t refl = t | |
329 selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) | |
330 selection {ψ} {X} {y} = record { | |
331 proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } | |
332 ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } | |
333 } | |
334 minord : (x : OD {suc n} ) → ¬ (x == od∅ )→ Minimumo (od→ord x) | |
57 | 335 minord x not = ominimal (od→ord x) (∅9 not) |
54 | 336 minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} |
41 | 337 minimul x not = ord→od ( mino (minord x not)) |
54 | 338 minimul<x : (x : OD {suc n} ) → (not : ¬ x == od∅ ) → x ∋ minimul x not |
42 | 339 minimul<x x not = lemma0 (min<x (minord x not)) where |
340 lemma0 : mino (minord x not) o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not)))) | |
54 | 341 lemma0 m<x = def-subst {suc n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl |
58 | 342 regularity-ord : (x : Ordinal ) (not : ¬ (ord→od x == od∅)) → |
343 (ord→od x ∋ minimul (ord→od x) not) ∧ (Select (minimul (ord→od x) not) (λ x₁ → (minimul (ord→od x) not ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅) | |
344 proj1 ( regularity-ord x not ) = minimul<x (ord→od x) not | |
345 proj2 ( regularity-ord x not ) = reg1 where | |
346 reg2 : {y : Ordinal} → ( def (minimul (ord→od x) not) y ∧ (minimul (ord→od x) not ∋ ord→od y) ∧ ((ord→od x) ∋ ord→od y) ) → ⊥ | |
54 | 347 reg2 {y} t with proj1 t | proj1 (proj2 t) | proj2 (proj2 t) |
57 | 348 ... | p1 | p2 | p3 with is-∋ (ord→od x) ( ord→od y) |
56 | 349 reg2 {y} t | p1 | p2 | p3 | no ¬p = ⊥-elim (¬p p3 ) -- ¬ x ∋ ord→od y empty x case |
58 | 350 reg2 {y} t | p1 | p2 | p3 | yes p with is-∋ (minimul (ord→od x) not) (ord→od y) |
56 | 351 reg2 {y} t | p1 | p2 | p3 | yes p | no ¬p = ⊥-elim (¬p p2 ) -- minimum contains nothing q.e.d. |
352 reg2 {y} t | p1 | p2 | p3 | yes p | yes p₁ = {!!} | |
58 | 353 reg0 : {y : Ordinal {suc n}} → def (Select (minimul (ord→od x) not) (λ z → (minimul (ord→od x) not ∋ z) ∧ ((ord→od x) ∋ z))) y → def od∅ y |
354 reg0 {y} t with trio< y (mino (minord (ord→od x) not)) | |
355 reg0 {y} t | tri< a ¬b ¬c with reg2 {y} t | |
54 | 356 ... | () |
58 | 357 reg0 {y} t | tri≈ ¬a refl ¬c = lemma y ( mino (minord (ord→od x) not) ) refl |
358 (def-subst {suc n} {ord→od y} {mino (minord (ord→od x) not)} (proj1 t) refl (sym diso)) | |
55
9c0a5e28a572
regurality elimination case
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
359 where |
9c0a5e28a572
regurality elimination case
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
360 lemma : ( ox oy : Ordinal {suc n} ) → ox ≡ oy → ord→od ox c< ord→od oy → Lift (suc n) ⊥ |
9c0a5e28a572
regurality elimination case
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
361 lemma ox oy refl lt = lift ( o≡→¬c< {suc n} {ord→od oy} {ord→od oy} refl lt ) |
58 | 362 reg0 {y} t | tri> ¬a ¬b c with o<> y (mino (minord (ord→od x) not)) (lemma {!!}) c where |
363 lemma : def (ord→od (mino (minord (ord→od x) not))) y → y o< mino (minord (ord→od x) not) | |
364 lemma d with c<→o< {suc n} {ord→od y} {ord→od (mino (minord (ord→od x) not))} | |
365 (def-subst {suc n} {ord→od (mino (minord (ord→od x) not))} {y} {!!} refl (sym diso)) | |
55
9c0a5e28a572
regurality elimination case
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
366 lemma d | clt = o<-subst clt ord-iso ord-iso |
9c0a5e28a572
regurality elimination case
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
367 ... | () |
58 | 368 reg1 : Select (minimul (ord→od x) not) (λ x₁ → (minimul (ord→od x) not ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅ |
369 reg1 = record { eq→ = reg0 ; eq← = λ () } where | |
57 | 370 ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) |
371 ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq where | |
372 regularity : (x : OD) (not : ¬ (x == od∅)) → | |
373 (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) | |
58 | 374 proj1 (regularity x not ) = minimul<x x not |
375 proj2 (regularity x not ) = record { eq→ = reg4 ; eq← = λ () } where | |
376 reg4 : {xd : Ordinal } → def (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁))) xd → def od∅ xd | |
377 reg4 {xd} = {!!} (eq→ (proj1 (regularity-ord {!!} {!!} )) ) | |
42 | 378 |
58 | 379 |
380 | |
381 | |
382 |