Mercurial > hg > Members > kono > Proof > category
annotate pullback.agda @ 474:2d32ded94aaf
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 07 Mar 2017 08:27:33 +0900 |
parents | c375d8f93a2c |
children | 4c0a955b651d |
rev | line source |
---|---|
260 | 1 -- Pullback from product and equalizer |
2 -- | |
3 -- | |
4 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
5 ---- | |
6 | |
7 open import Category -- https://github.com/konn/category-agda | |
8 open import Level | |
266 | 9 module pullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ') ( Γ : Functor I A ) where |
260 | 10 |
11 open import HomReasoning | |
12 open import cat-utility | |
13 | |
282 | 14 -- |
264 | 15 -- Pullback from equalizer and product |
260 | 16 -- f |
300 | 17 -- a ------→ c |
282 | 18 -- ^ ^ |
260 | 19 -- π1 | |g |
20 -- | | | |
300 | 21 -- ab ------→ b |
260 | 22 -- ^ π2 |
23 -- | | |
282 | 24 -- | e = equalizer (f π1) (g π1) |
264 | 25 -- | |
26 -- d <------------------ d' | |
27 -- k (π1' × π2' ) | |
260 | 28 |
261 | 29 open Equalizer |
443 | 30 open IsEqualizer |
261 | 31 open Product |
32 open Pullback | |
33 | |
282 | 34 pullback-from : (a b c ab d : Obj A) |
260 | 35 ( f : Hom A a c ) ( g : Hom A b c ) |
261 | 36 ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( e : Hom A d ab ) |
443 | 37 ( eqa : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → IsEqualizer A e f g ) |
282 | 38 ( prod : Product A a b ab π1 π2 ) → Pullback A a b c d f g |
443 | 39 ( A [ π1 o equalizer1 ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) ) ] ) |
40 ( A [ π2 o equalizer1 ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) ) ] ) | |
261 | 41 pullback-from a b c ab d f g π1 π2 e eqa prod = record { |
260 | 42 commute = commute1 ; |
282 | 43 p = p1 ; |
44 π1p=π1 = λ {d} {π1'} {π2'} {eq} → π1p=π11 {d} {π1'} {π2'} {eq} ; | |
45 π2p=π2 = λ {d} {π1'} {π2'} {eq} → π2p=π21 {d} {π1'} {π2'} {eq} ; | |
260 | 46 uniqueness = uniqueness1 |
282 | 47 } where |
443 | 48 commute1 : A [ A [ f o A [ π1 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] |
49 ≈ A [ g o A [ π2 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ] | |
262 | 50 commute1 = let open ≈-Reasoning (A) in |
51 begin | |
443 | 52 f o ( π1 o equalizer1 (eqa ( f o π1 ) ( g o π2 )) ) |
262 | 53 ≈⟨ assoc ⟩ |
443 | 54 ( f o π1 ) o equalizer1 (eqa ( f o π1 ) ( g o π2 )) |
262 | 55 ≈⟨ fe=ge (eqa (A [ f o π1 ]) (A [ g o π2 ])) ⟩ |
443 | 56 ( g o π2 ) o equalizer1 (eqa ( f o π1 ) ( g o π2 )) |
262 | 57 ≈↑⟨ assoc ⟩ |
443 | 58 g o ( π2 o equalizer1 (eqa ( f o π1 ) ( g o π2 )) ) |
262 | 59 ∎ |
282 | 60 lemma1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → |
262 | 61 A [ A [ A [ f o π1 ] o (prod × π1') π2' ] ≈ A [ A [ g o π2 ] o (prod × π1') π2' ] ] |
282 | 62 lemma1 {d'} { π1' } { π2' } eq = let open ≈-Reasoning (A) in |
262 | 63 begin |
64 ( f o π1 ) o (prod × π1') π2' | |
65 ≈↑⟨ assoc ⟩ | |
66 f o ( π1 o (prod × π1') π2' ) | |
67 ≈⟨ cdr (π1fxg=f prod) ⟩ | |
68 f o π1' | |
69 ≈⟨ eq ⟩ | |
70 g o π2' | |
71 ≈↑⟨ cdr (π2fxg=g prod) ⟩ | |
72 g o ( π2 o (prod × π1') π2' ) | |
73 ≈⟨ assoc ⟩ | |
74 ( g o π2 ) o (prod × π1') π2' | |
75 ∎ | |
261 | 76 p1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d' d |
282 | 77 p1 {d'} { π1' } { π2' } eq = |
262 | 78 let open ≈-Reasoning (A) in k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) ( lemma1 eq ) |
282 | 79 π1p=π11 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → |
443 | 80 A [ A [ A [ π1 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π1' ] |
262 | 81 π1p=π11 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in |
82 begin | |
443 | 83 ( π1 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ) o p1 eq |
262 | 84 ≈⟨⟩ |
85 ( π1 o e) o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) | |
86 ≈↑⟨ assoc ⟩ | |
87 π1 o ( e o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ) | |
88 ≈⟨ cdr ( ek=h ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} )) ⟩ | |
282 | 89 π1 o (_×_ prod π1' π2' ) |
262 | 90 ≈⟨ π1fxg=f prod ⟩ |
91 π1' | |
92 ∎ | |
282 | 93 π2p=π21 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → |
443 | 94 A [ A [ A [ π2 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π2' ] |
262 | 95 π2p=π21 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in |
96 begin | |
443 | 97 ( π2 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ) o p1 eq |
262 | 98 ≈⟨⟩ |
99 ( π2 o e) o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) | |
100 ≈↑⟨ assoc ⟩ | |
101 π2 o ( e o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ) | |
102 ≈⟨ cdr ( ek=h ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} )) ⟩ | |
282 | 103 π2 o (_×_ prod π1' π2' ) |
262 | 104 ≈⟨ π2fxg=g prod ⟩ |
105 π2' | |
106 ∎ | |
302 | 107 uniqueness1 : {d₁ : Obj A} (p' : Hom A d₁ d) {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} |
108 {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → | |
443 | 109 {eq1 : A [ A [ A [ π1 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π1' ]} → |
110 {eq2 : A [ A [ A [ π2 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π2' ]} → | |
261 | 111 A [ p1 eq ≈ p' ] |
264 | 112 uniqueness1 {d'} p' {π1'} {π2'} {eq} {eq1} {eq2} = let open ≈-Reasoning (A) in |
263 | 113 begin |
114 p1 eq | |
115 ≈⟨⟩ | |
116 k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) | |
443 | 117 ≈⟨ IsEqualizer.uniqueness (eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e}) ( begin |
264 | 118 e o p' |
119 ≈⟨⟩ | |
443 | 120 equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p' |
264 | 121 ≈↑⟨ Product.uniqueness prod ⟩ |
443 | 122 (prod × ( π1 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p') ) ( π2 o (equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p')) |
264 | 123 ≈⟨ ×-cong prod (assoc) (assoc) ⟩ |
443 | 124 (prod × (A [ A [ π1 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ])) |
125 (A [ A [ π2 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ]) | |
264 | 126 ≈⟨ ×-cong prod eq1 eq2 ⟩ |
127 ((prod × π1') π2') | |
128 ∎ ) ⟩ | |
263 | 129 p' |
130 ∎ | |
131 | |
266 | 132 -------------------------------- |
133 -- | |
134 -- If we have two limits on c and c', there are isomorphic pair h, h' | |
135 | |
136 open Limit | |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
303
diff
changeset
|
137 open NTrans |
266 | 138 |
139 iso-l : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) | |
291 | 140 ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K A I a0 ) Γ ) ( t0' : NTrans I A ( K A I a0' ) Γ ) |
141 ( lim : Limit A I Γ a0 t0 ) → ( lim' : Limit A I Γ a0' t0' ) | |
266 | 142 → Hom A a0 a0' |
143 iso-l I Γ a0 a0' t0 t0' lim lim' = limit lim' a0 t0 | |
144 | |
145 iso-r : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) | |
291 | 146 ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K A I a0 ) Γ ) ( t0' : NTrans I A ( K A I a0' ) Γ ) |
147 ( lim : Limit A I Γ a0 t0 ) → ( lim' : Limit A I Γ a0' t0' ) | |
266 | 148 → Hom A a0' a0 |
149 iso-r I Γ a0 a0' t0 t0' lim lim' = limit lim a0' t0' | |
150 | |
151 | |
152 iso-lr : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) | |
291 | 153 ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K A I a0 ) Γ ) ( t0' : NTrans I A ( K A I a0' ) Γ ) |
154 ( lim : Limit A I Γ a0 t0 ) → ( lim' : Limit A I Γ a0' t0' ) → ∀{ i : Obj I } → | |
266 | 155 A [ A [ iso-l I Γ a0 a0' t0 t0' lim lim' o iso-r I Γ a0 a0' t0 t0' lim lim' ] ≈ id1 A a0' ] |
156 iso-lr I Γ a0 a0' t0 t0' lim lim' {i} = let open ≈-Reasoning (A) in begin | |
157 limit lim' a0 t0 o limit lim a0' t0' | |
440 | 158 ≈↑⟨ limit-uniqueness lim' ( limit lim' a0 t0 o limit lim a0' t0' )( λ {i} → ( begin |
266 | 159 TMap t0' i o ( limit lim' a0 t0 o limit lim a0' t0' ) |
160 ≈⟨ assoc ⟩ | |
282 | 161 ( TMap t0' i o limit lim' a0 t0 ) o limit lim a0' t0' |
266 | 162 ≈⟨ car ( t0f=t lim' ) ⟩ |
282 | 163 TMap t0 i o limit lim a0' t0' |
266 | 164 ≈⟨ t0f=t lim ⟩ |
282 | 165 TMap t0' i |
271 | 166 ∎) ) ⟩ |
266 | 167 limit lim' a0' t0' |
440 | 168 ≈⟨ limit-uniqueness lim' (id a0') idR ⟩ |
266 | 169 id a0' |
170 ∎ | |
171 | |
172 | |
282 | 173 open import CatExponetial |
267 | 174 |
175 open Functor | |
176 | |
177 -------------------------------- | |
178 -- | |
363 | 179 -- Constancy Functor |
266 | 180 |
268 | 181 KI : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) → Functor A ( A ^ I ) |
182 KI { c₁'} {c₂'} {ℓ'} I = record { | |
291 | 183 FObj = λ a → K A I a ; |
184 FMap = λ f → record { -- NTrans I A (K A I a) (K A I b) | |
267 | 185 TMap = λ a → f ; |
282 | 186 isNTrans = record { |
267 | 187 commute = λ {a b f₁} → commute1 {a} {b} {f₁} f |
188 } | |
282 | 189 } ; |
266 | 190 isFunctor = let open ≈-Reasoning (A) in record { |
267 | 191 ≈-cong = λ f=g {x} → f=g |
266 | 192 ; identity = refl-hom |
267 | 193 ; distr = refl-hom |
266 | 194 } |
267 | 195 } where |
196 commute1 : {a b : Obj I} {f₁ : Hom I a b} → {a' b' : Obj A} → (f : Hom A a' b' ) → | |
291 | 197 A [ A [ FMap (K A I b') f₁ o f ] ≈ A [ f o FMap (K A I a') f₁ ] ] |
282 | 198 commute1 {a} {b} {f₁} {a'} {b'} f = let open ≈-Reasoning (A) in begin |
291 | 199 FMap (K A I b') f₁ o f |
267 | 200 ≈⟨ idL ⟩ |
201 f | |
202 ≈↑⟨ idR ⟩ | |
291 | 203 f o FMap (K A I a') f₁ |
267 | 204 ∎ |
205 | |
206 | |
272 | 207 --------- |
208 -- | |
298 | 209 -- Limit Constancy Functor F : A → A^I has right adjoint |
210 -- | |
211 -- we are going to prove universal mapping | |
212 | |
213 --------- | |
214 -- | |
272 | 215 -- limit gives co universal mapping ( i.e. adjunction ) |
216 -- | |
217 -- F = KI I : Functor A (A ^ I) | |
282 | 218 -- U = λ b → A0 (lim b {a0 b} {t0 b} |
219 -- ε = λ b → T0 ( lim b {a0 b} {t0 b} ) | |
272 | 220 |
282 | 221 limit2couniv : |
291 | 222 ( lim : ( Γ : Functor I A ) → { a0 : Obj A } { t0 : NTrans I A ( K A I a0 ) Γ } → Limit A I Γ a0 t0 ) |
223 → ( a0 : ( b : Functor I A ) → Obj A ) ( t0 : ( b : Functor I A ) → NTrans I A ( K A I (a0 b) ) b ) | |
270
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
224 → coUniversalMapping A ( A ^ I ) (KI I) (λ b → A0 (lim b {a0 b} {t0 b} ) ) ( λ b → T0 ( lim b {a0 b} {t0 b} ) ) |
277 | 225 limit2couniv lim a0 t0 = record { -- F U ε |
274
1b651faa2391
adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
273
diff
changeset
|
226 _*' = λ {b} {a} k → limit (lim b {a0 b} {t0 b} ) a k ; -- η |
270
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
227 iscoUniversalMapping = record { |
282 | 228 couniversalMapping = λ{ b a f} → couniversalMapping1 {b} {a} {f} ; |
271 | 229 couniquness = couniquness2 |
270
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
230 } |
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
231 } where |
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
232 couniversalMapping1 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} → |
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
233 A ^ I [ A ^ I [ T0 (lim b {a0 b} {t0 b}) o FMap (KI I) (limit (lim b {a0 b} {t0 b}) a f) ] ≈ f ] |
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
234 couniversalMapping1 {b} {a} {f} {i} = let open ≈-Reasoning (A) in begin |
282 | 235 TMap (T0 (lim b {a0 b} {t0 b})) i o TMap ( FMap (KI I) (limit (lim b {a0 b} {t0 b}) a f) ) i |
270
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
236 ≈⟨⟩ |
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
237 TMap (t0 b) i o (limit (lim b) a f) |
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
238 ≈⟨ t0f=t (lim b) ⟩ |
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
239 TMap f i -- i comes from ∀{i} → B [ TMap f i ≈ TMap g i ] |
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
240 ∎ |
271 | 241 couniquness2 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} {g : Hom A a (A0 (lim b {a0 b} {t0 b} ))} → |
282 | 242 ( ∀ { i : Obj I } → A [ A [ TMap (T0 (lim b {a0 b} {t0 b} )) i o TMap ( FMap (KI I) g) i ] ≈ TMap f i ] ) |
272 | 243 → A [ limit (lim b {a0 b} {t0 b} ) a f ≈ g ] |
271 | 244 couniquness2 {b} {a} {f} {g} lim-g=f = let open ≈-Reasoning (A) in begin |
270
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
245 limit (lim b {a0 b} {t0 b} ) a f |
440 | 246 ≈⟨ limit-uniqueness ( lim b {a0 b} {t0 b} ) g lim-g=f ⟩ |
270
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
247 g |
8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
269
diff
changeset
|
248 ∎ |
268 | 249 |
272 | 250 open import Category.Cat |
275 | 251 |
252 | |
278 | 253 open coUniversalMapping |
282 | 254 |
255 univ2limit : | |
256 ( U : Obj (A ^ I ) → Obj A ) | |
291 | 257 ( ε : ( b : Obj (A ^ I ) ) → NTrans I A (K A I (U b)) b ) |
279
8df8e74e6316
limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
278
diff
changeset
|
258 ( univ : coUniversalMapping A (A ^ I) (KI I) U (ε) ) → |
291 | 259 ( Γ : Functor I A ) → Limit A I Γ (U Γ) (ε Γ) |
278 | 260 univ2limit U ε univ Γ = record { |
272 | 261 limit = λ a t → limit1 a t ; |
282 | 262 t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; |
440 | 263 limit-uniqueness = λ {a} {t} f t=f → limit-uniqueness1 {a} {t} {f} t=f |
272 | 264 } where |
291 | 265 limit1 : (a : Obj A) → NTrans I A (K A I a) Γ → Hom A a (U Γ) |
282 | 266 limit1 a t = _*' univ {_} {a} t |
291 | 267 t0f=t1 : {a : Obj A} {t : NTrans I A (K A I a) Γ} {i : Obj I} → |
279
8df8e74e6316
limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
278
diff
changeset
|
268 A [ A [ TMap (ε Γ) i o limit1 a t ] ≈ TMap t i ] |
274
1b651faa2391
adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
273
diff
changeset
|
269 t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin |
279
8df8e74e6316
limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
278
diff
changeset
|
270 TMap (ε Γ) i o limit1 a t |
274
1b651faa2391
adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
273
diff
changeset
|
271 ≈⟨⟩ |
280 | 272 TMap (ε Γ) i o _*' univ {Γ} {a} t |
273 ≈⟨ coIsUniversalMapping.couniversalMapping ( iscoUniversalMapping univ) {Γ} {a} {t} ⟩ | |
274
1b651faa2391
adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
273
diff
changeset
|
274 TMap t i |
1b651faa2391
adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
273
diff
changeset
|
275 ∎ |
291 | 276 limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K A I a ) Γ } → { f : Hom A a (U Γ)} |
279
8df8e74e6316
limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
278
diff
changeset
|
277 → ( ∀ { i : Obj I } → A [ A [ TMap (ε Γ) i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ] |
274
1b651faa2391
adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
273
diff
changeset
|
278 limit-uniqueness1 {a} {t} {f} εf=t = let open ≈-Reasoning (A) in begin |
278 | 279 _*' univ t |
280 ≈⟨ ( coIsUniversalMapping.couniquness ( iscoUniversalMapping univ) ) εf=t ⟩ | |
274
1b651faa2391
adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
273
diff
changeset
|
281 f |
1b651faa2391
adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
273
diff
changeset
|
282 ∎ |
1b651faa2391
adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
273
diff
changeset
|
283 |
303
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
284 |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
285 lemma-p0 : (a b ab : Obj A) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( prod : Product A a b ab π1 π2 ) → |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
286 A [ _×_ prod π1 π2 ≈ id1 A ab ] |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
287 lemma-p0 a b ab π1 π2 prod = let open ≈-Reasoning (A) in begin |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
288 _×_ prod π1 π2 |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
289 ≈↑⟨ ×-cong prod idR idR ⟩ |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
290 _×_ prod (A [ π1 o id1 A ab ]) (A [ π2 o id1 A ab ]) |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
291 ≈⟨ Product.uniqueness prod ⟩ |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
292 id1 A ab |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
293 ∎ |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
294 |
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
295 |
282 | 296 open IProduct |
283 | 297 open Equalizer |
281
dbd2044add2a
limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
280
diff
changeset
|
298 |
282 | 299 -- |
300 -- limit from equalizer and product | |
301 -- | |
302 -- | |
283 | 303 -- ai |
304 -- ^ K f = id lim | |
300 | 305 -- | pi lim = K i -----------→ K j = lim |
283 | 306 -- | | | |
307 -- p | | | |
303
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
308 -- ^ proj i o e = ε i | | ε j = proj j o e |
283 | 309 -- | | | |
285
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
310 -- | e = equalizer (id p) (id p) | | |
283 | 311 -- | v v |
300 | 312 -- lim <------------------ d' a i = Γ i -----------→ Γ j = a j |
283 | 313 -- k ( product pi ) Γ f |
314 -- Γ f o ε i = ε j | |
315 -- | |
291 | 316 |
283 | 317 limit-ε : |
443 | 318 ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → IsEqualizer A e f g ) |
282 | 319 ( lim p : Obj A ) ( e : Hom A lim p ) |
320 ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) → | |
291 | 321 NTrans I A (K A I lim) Γ |
303
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
322 limit-ε eqa lim p e proj = record { |
282 | 323 TMap = tmap ; |
303
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
324 isNTrans = record { commute = commute1 } |
281
dbd2044add2a
limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
280
diff
changeset
|
325 } where |
291 | 326 tmap : (i : Obj I) → Hom A (FObj (K A I lim) i) (FObj Γ i) |
285
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
327 tmap i = A [ proj i o e ] |
283 | 328 commute1 : {i j : Obj I} {f : Hom I i j} → |
291 | 329 A [ A [ FMap Γ f o tmap i ] ≈ A [ tmap j o FMap (K A I lim) f ] ] |
285
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
330 commute1 {i} {j} {f} = let open ≈-Reasoning (A) in begin |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
331 FMap Γ f o tmap i |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
332 ≈⟨⟩ |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
333 FMap Γ f o ( proj i o e ) |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
334 ≈⟨ assoc ⟩ |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
335 ( FMap Γ f o proj i ) o e |
303
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
336 ≈⟨ fe=ge ( eqa e (FMap Γ f o proj i) ( proj j )) ⟩ |
285
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
337 proj j o e |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
338 ≈↑⟨ idR ⟩ |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
339 (proj j o e ) o id1 A lim |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
340 ≈⟨⟩ |
291 | 341 tmap j o FMap (K A I lim) f |
288 | 342 ∎ |
281
dbd2044add2a
limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
280
diff
changeset
|
343 |
282 | 344 limit-from : |
285
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
345 ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) ) |
281
dbd2044add2a
limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
280
diff
changeset
|
346 → IProduct {c₁'} A (Obj I) p ai pi ) |
443 | 347 ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → IsEqualizer A e f g ) |
290 | 348 ( lim p : Obj A ) -- limit to be made |
285
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
349 ( e : Hom A lim p ) -- existing of equalizer |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
350 ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) -- existing of product ( projection actually ) |
303
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
351 → Limit A I Γ lim ( limit-ε eqa lim p e proj ) |
290 | 352 limit-from prod eqa lim p e proj = record { |
282 | 353 limit = λ a t → limit1 a t ; |
354 t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; | |
440 | 355 limit-uniqueness = λ {a} {t} f t=f → limit-uniqueness1 {a} {t} {f} t=f |
282 | 356 } where |
291 | 357 limit1 : (a : Obj A) → NTrans I A (K A I a) Γ → Hom A a lim |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
443
diff
changeset
|
358 limit1 a t = let open ≈-Reasoning (A) in k (eqa e (id1 A p) (id1 A p )) (iproduct ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom |
291 | 359 t0f=t1 : {a : Obj A} {t : NTrans I A (K A I a) Γ} {i : Obj I} → |
303
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
360 A [ A [ TMap (limit-ε eqa lim p e proj ) i o limit1 a t ] ≈ TMap t i ] |
283 | 361 t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin |
303
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
362 TMap (limit-ε eqa lim p e proj ) i o limit1 a t |
283 | 363 ≈⟨⟩ |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
443
diff
changeset
|
364 ( ( proj i ) o e ) o k (eqa e (id1 A p) (id1 A p )) (iproduct ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom |
283 | 365 ≈↑⟨ assoc ⟩ |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
443
diff
changeset
|
366 proj i o ( e o k (eqa e (id1 A p) (id1 A p )) (iproduct ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom ) |
283 | 367 ≈⟨ cdr ( ek=h ( eqa e (id1 A p) (id1 A p ) ) ) ⟩ |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
443
diff
changeset
|
368 proj i o iproduct (prod p (FObj Γ) proj) (TMap t) |
283 | 369 ≈⟨ pif=q (prod p (FObj Γ) proj) (TMap t) ⟩ |
370 TMap t i | |
371 ∎ | |
291 | 372 limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K A I a) Γ} {f : Hom A a lim} |
303
7f40d6a51c72
Limit form equalizer and product done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
302
diff
changeset
|
373 → ({i : Obj I} → A [ A [ TMap (limit-ε eqa lim p e proj ) i o f ] ≈ TMap t i ]) → |
282 | 374 A [ limit1 a t ≈ f ] |
283 | 375 limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin |
376 limit1 a t | |
377 ≈⟨⟩ | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
443
diff
changeset
|
378 k (eqa e (id1 A p) (id1 A p )) (iproduct ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom |
443 | 379 ≈⟨ IsEqualizer.uniqueness (eqa e (id1 A p) (id1 A p )) ( begin |
283 | 380 e o f |
381 ≈↑⟨ ip-uniqueness (prod p (FObj Γ) proj) ⟩ | |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
443
diff
changeset
|
382 iproduct (prod p (FObj Γ) proj) (λ i → ( proj i o ( e o f ) ) ) |
284 | 383 ≈⟨ ip-cong (prod p (FObj Γ) proj) ( λ i → begin |
285
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
384 proj i o ( e o f ) |
284 | 385 ≈⟨ assoc ⟩ |
285
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
386 ( proj i o e ) o f |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
387 ≈⟨ lim=t {i} ⟩ |
46d4ad55b948
commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
284
diff
changeset
|
388 TMap t i |
284 | 389 ∎ ) ⟩ |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
443
diff
changeset
|
390 iproduct (prod p (FObj Γ) proj) (TMap t) |
283 | 391 ∎ ) ⟩ |
392 f | |
393 ∎ | |
394 | |
291 | 395 ---- |
396 -- | |
397 -- Adjoint functor preserves limits | |
398 -- | |
399 -- | |
400 | |
401 open import Category.Cat | |
402 | |
403 ta1 : { c₁' c₂' ℓ' : Level} (B : Category c₁' c₂' ℓ') ( Γ : Functor I B ) | |
299
8c72f5284bc8
remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
298
diff
changeset
|
404 ( lim : Obj B ) ( tb : NTrans I B ( K B I lim ) Γ ) → |
291 | 405 ( U : Functor B A) → NTrans I A ( K A I (FObj U lim) ) (U ○ Γ) |
299
8c72f5284bc8
remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
298
diff
changeset
|
406 ta1 B Γ lim tb U = record { |
291 | 407 TMap = TMap (Functor*Nat I A U tb) ; |
408 isNTrans = record { commute = λ {a} {b} {f} → let open ≈-Reasoning (A) in begin | |
409 FMap (U ○ Γ) f o TMap (Functor*Nat I A U tb) a | |
410 ≈⟨ nat ( Functor*Nat I A U tb ) ⟩ | |
411 TMap (Functor*Nat I A U tb) b o FMap (U ○ K B I lim) f | |
412 ≈⟨ cdr (IsFunctor.identity (isFunctor U) ) ⟩ | |
413 TMap (Functor*Nat I A U tb) b o FMap (K A I (FObj U lim)) f | |
414 ∎ | |
415 } } | |
416 | |
417 adjoint-preseve-limit : | |
418 { c₁' c₂' ℓ' : Level} (B : Category c₁' c₂' ℓ') ( Γ : Functor I B ) | |
299
8c72f5284bc8
remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
298
diff
changeset
|
419 ( lim : Obj B ) ( tb : NTrans I B ( K B I lim ) Γ ) → ( limitb : Limit B I Γ lim tb ) → |
291 | 420 { U : Functor B A } { F : Functor A B } |
293 | 421 { η : NTrans A A identityFunctor ( U ○ F ) } |
291 | 422 { ε : NTrans B B ( F ○ U ) identityFunctor } → |
299
8c72f5284bc8
remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
298
diff
changeset
|
423 ( adj : Adjunction A B U F η ε ) → Limit A I (U ○ Γ) (FObj U lim) (ta1 B Γ lim tb U ) |
292 | 424 adjoint-preseve-limit B Γ lim tb limitb {U} {F} {η} {ε} adj = record { |
291 | 425 limit = λ a t → limit1 a t ; |
426 t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; | |
440 | 427 limit-uniqueness = λ {a} {t} f t=f → limit-uniqueness1 {a} {t} {f} t=f |
291 | 428 } where |
299
8c72f5284bc8
remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
298
diff
changeset
|
429 ta = ta1 B Γ lim tb U |
293 | 430 tfmap : (a : Obj A) → NTrans I A (K A I a) (U ○ Γ) → (i : Obj I) → Hom B (FObj (K B I (FObj F a)) i) (FObj Γ i) |
431 tfmap a t i = B [ TMap ε (FObj Γ i) o FMap F (TMap t i) ] | |
432 tF : (a : Obj A) → NTrans I A (K A I a) (U ○ Γ) → NTrans I B (K B I (FObj F a)) Γ | |
433 tF a t = record { | |
434 TMap = tfmap a t ; | |
435 isNTrans = record { commute = λ {a'} {b} {f} → let open ≈-Reasoning (B) in begin | |
436 FMap Γ f o tfmap a t a' | |
294 | 437 ≈⟨⟩ |
438 FMap Γ f o ( TMap ε (FObj Γ a') o FMap F (TMap t a')) | |
439 ≈⟨ assoc ⟩ | |
440 (FMap Γ f o TMap ε (FObj Γ a') ) o FMap F (TMap t a') | |
441 ≈⟨ car (nat ε) ⟩ | |
442 (TMap ε (FObj Γ b) o FMap (F ○ U) (FMap Γ f) ) o FMap F (TMap t a') | |
443 ≈↑⟨ assoc ⟩ | |
444 TMap ε (FObj Γ b) o ( FMap (F ○ U) (FMap Γ f) o FMap F (TMap t a') ) | |
445 ≈↑⟨ cdr ( distr F ) ⟩ | |
446 TMap ε (FObj Γ b) o ( FMap F (A [ FMap U (FMap Γ f) o TMap t a' ] ) ) | |
447 ≈⟨ cdr ( fcong F (nat t) ) ⟩ | |
448 TMap ε (FObj Γ b) o FMap F (A [ TMap t b o FMap (K A I a) f ]) | |
449 ≈⟨⟩ | |
450 TMap ε (FObj Γ b) o FMap F (A [ TMap t b o id1 A (FObj (K A I a) b) ]) | |
299
8c72f5284bc8
remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
298
diff
changeset
|
451 ≈⟨ cdr ( fcong F (idR1 A)) ⟩ |
294 | 452 TMap ε (FObj Γ b) o FMap F (TMap t b ) |
453 ≈↑⟨ idR ⟩ | |
454 ( TMap ε (FObj Γ b) o FMap F (TMap t b)) o id1 B (FObj F (FObj (K A I a) b)) | |
455 ≈⟨⟩ | |
293 | 456 tfmap a t b o FMap (K B I (FObj F a)) f |
457 ∎ | |
458 } } | |
459 limit1 : (a : Obj A) → NTrans I A (K A I a) (U ○ Γ) → Hom A a (FObj U lim) | |
460 limit1 a t = A [ FMap U (limit limitb (FObj F a) (tF a t )) o TMap η a ] | |
461 t0f=t1 : {a : Obj A} {t : NTrans I A (K A I a) (U ○ Γ)} {i : Obj I} → | |
291 | 462 A [ A [ TMap ta i o limit1 a t ] ≈ TMap t i ] |
295 | 463 t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin |
464 TMap ta i o limit1 a t | |
465 ≈⟨⟩ | |
466 FMap U ( TMap tb i ) o ( FMap U (limit limitb (FObj F a) (tF a t )) o TMap η a ) | |
467 ≈⟨ assoc ⟩ | |
468 ( FMap U ( TMap tb i ) o FMap U (limit limitb (FObj F a) (tF a t ))) o TMap η a | |
469 ≈↑⟨ car ( distr U ) ⟩ | |
470 FMap U ( B [ TMap tb i o limit limitb (FObj F a) (tF a t ) ] ) o TMap η a | |
471 ≈⟨ car ( fcong U ( t0f=t limitb ) ) ⟩ | |
472 FMap U (TMap (tF a t) i) o TMap η a | |
473 ≈⟨⟩ | |
474 FMap U ( B [ TMap ε (FObj Γ i) o FMap F (TMap t i) ] ) o TMap η a | |
475 ≈⟨ car ( distr U ) ⟩ | |
476 ( FMap U ( TMap ε (FObj Γ i)) o FMap U ( FMap F (TMap t i) )) o TMap η a | |
477 ≈↑⟨ assoc ⟩ | |
478 FMap U ( TMap ε (FObj Γ i) ) o ( FMap U ( FMap F (TMap t i) ) o TMap η a ) | |
479 ≈⟨ cdr ( nat η ) ⟩ | |
480 FMap U (TMap ε (FObj Γ i)) o ( TMap η (FObj U (FObj Γ i)) o FMap (identityFunctor {_} {_} {_} {A}) (TMap t i) ) | |
481 ≈⟨ assoc ⟩ | |
482 ( FMap U (TMap ε (FObj Γ i)) o TMap η (FObj U (FObj Γ i))) o TMap t i | |
483 ≈⟨ car ( IsAdjunction.adjoint1 ( Adjunction.isAdjunction adj ) ) ⟩ | |
484 id1 A (FObj (U ○ Γ) i) o TMap t i | |
485 ≈⟨ idL ⟩ | |
486 TMap t i | |
487 ∎ | |
296 | 488 -- ta = TMap (Functor*Nat I A U tb) , FMap U ( TMap tb i ) o f ≈ TMap t i |
293 | 489 limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K A I a) (U ○ Γ)} {f : Hom A a (FObj U lim)} |
291 | 490 → ({i : Obj I} → A [ A [ TMap ta i o f ] ≈ TMap t i ]) → |
491 A [ limit1 a t ≈ f ] | |
295 | 492 limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin |
493 limit1 a t | |
494 ≈⟨⟩ | |
495 FMap U (limit limitb (FObj F a) (tF a t )) o TMap η a | |
440 | 496 ≈⟨ car ( fcong U (limit-uniqueness limitb (B [ TMap ε lim o FMap F f ] ) ( λ {i} → lemma1 i) )) ⟩ |
298 | 497 FMap U ( B [ TMap ε lim o FMap F f ] ) o TMap η a -- Universal mapping |
297
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
498 ≈⟨ car (distr U ) ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
499 ( (FMap U (TMap ε lim)) o (FMap U ( FMap F f )) ) o TMap η a |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
500 ≈⟨ sym assoc ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
501 (FMap U (TMap ε lim)) o ((FMap U ( FMap F f )) o TMap η a ) |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
502 ≈⟨ cdr (nat η) ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
503 (FMap U (TMap ε lim)) o ((TMap η (FObj U lim )) o f ) |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
504 ≈⟨ assoc ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
505 ((FMap U (TMap ε lim)) o (TMap η (FObj U lim))) o f |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
506 ≈⟨ car ( IsAdjunction.adjoint1 ( Adjunction.isAdjunction adj)) ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
507 id (FObj U lim) o f |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
508 ≈⟨ idL ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
509 f |
296 | 510 ∎ where |
511 lemma1 : (i : Obj I) → B [ B [ TMap tb i o B [ TMap ε lim o FMap F f ] ] ≈ TMap (tF a t) i ] | |
512 lemma1 i = let open ≈-Reasoning (B) in begin | |
513 TMap tb i o (TMap ε lim o FMap F f) | |
297
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
514 ≈⟨ assoc ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
515 ( TMap tb i o TMap ε lim ) o FMap F f |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
516 ≈⟨ car ( nat ε ) ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
517 ( TMap ε (FObj Γ i) o FMap F ( FMap U ( TMap tb i ))) o FMap F f |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
518 ≈↑⟨ assoc ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
519 TMap ε (FObj Γ i) o ( FMap F ( FMap U ( TMap tb i )) o FMap F f ) |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
520 ≈↑⟨ cdr ( distr F ) ⟩ |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
521 TMap ε (FObj Γ i) o FMap F ( A [ FMap U ( TMap tb i ) o f ] ) |
537570f6a44f
limit preservation proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
296
diff
changeset
|
522 ≈⟨ cdr ( fcong F (lim=t {i}) ) ⟩ |
296 | 523 TMap ε (FObj Γ i) o FMap F (TMap t i) |
524 ≈⟨⟩ | |
525 TMap (tF a t) i | |
526 ∎ | |
295 | 527 |
296 | 528 |
529 |