Mercurial > hg > Members > kono > Proof > category
annotate src/equalizer.agda @ 970:72b6b4577911
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 26 Feb 2021 12:19:58 +0900 |
parents | 50d8750d32c0 |
children | 4b517d46e987 |
rev | line source |
---|---|
205 | 1 --- |
2 -- | |
3 -- Equalizer | |
4 -- | |
208 | 5 -- e f |
300 | 6 -- c -------→ a ---------→ b |
7 -- ^ . ---------→ | |
205 | 8 -- | . g |
230 | 9 -- |k . |
10 -- | . h | |
11 -- d | |
205 | 12 -- |
13 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
14 ---- | |
15 | |
230 | 16 open import Category -- https://github.com/konn/category-agda |
205 | 17 open import Level |
18 module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where | |
19 | |
20 open import HomReasoning | |
21 open import cat-utility | |
22 | |
230 | 23 -- |
225 | 24 -- Some obvious conditions for k (fe = ge) → ( fh = gh ) |
25 -- | |
219 | 26 |
224 | 27 f1=g1 : { a b c : Obj A } {f g : Hom A a b } → (eq : A [ f ≈ g ] ) → (h : Hom A c a) → A [ A [ f o h ] ≈ A [ g o h ] ] |
28 f1=g1 eq h = let open ≈-Reasoning (A) in (resp refl-hom eq ) | |
29 | |
226 | 30 f1=f1 : { a b : Obj A } (f : Hom A a b ) → A [ A [ f o (id1 A a) ] ≈ A [ f o (id1 A a) ] ] |
230 | 31 f1=f1 f = let open ≈-Reasoning (A) in refl-hom |
226 | 32 |
224 | 33 f1=gh : { a b c d : Obj A } {f g : Hom A a b } → { e : Hom A c a } → { h : Hom A d c } → |
34 (eq : A [ A [ f o e ] ≈ A [ g o e ] ] ) → A [ A [ f o A [ e o h ] ] ≈ A [ g o A [ e o h ] ] ] | |
230 | 35 f1=gh {a} {b} {c} {d} {f} {g} {e} {h} eq = let open ≈-Reasoning (A) in |
224 | 36 begin |
37 f o ( e o h ) | |
38 ≈⟨ assoc ⟩ | |
230 | 39 (f o e ) o h |
224 | 40 ≈⟨ car eq ⟩ |
230 | 41 (g o e ) o h |
224 | 42 ≈↑⟨ assoc ⟩ |
43 g o ( e o h ) | |
44 ∎ | |
219 | 45 |
956 | 46 -- |
47 -- Burroni's Flat Equational Definition of Equalizer | |
48 -- | |
49 | |
958 | 50 record Burroni : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
956 | 51 field |
52 equ : {a b : Obj A } → (f g : Hom A a b) → Obj A | |
53 α : {a b : Obj A } → (f g : Hom A a b) → Hom A (equ f g) a | |
54 γ : {a b d : Obj A } → (f g : Hom A a b) → (h : Hom A d a ) → Hom A (equ (A [ f o h ]) (A [ g o h ])) (equ f g) | |
55 δ : {a b : Obj A } → (f g : Hom A a b) → A [ f ≈ g ] → Hom A a (equ f g) | |
958 | 56 b1 : {a b : Obj A } → (f g : Hom A a b) → A [ A [ f o α f g ] ≈ A [ g o α f g ] ] |
57 b1k : {a b : Obj A } → (f g : Hom A a b) → {d : Obj A } {k : Hom A d (equ f g)} → A [ A [ f o A [ α f g o k ] ] ≈ A [ g o A [ α f g o k ] ] ] | |
58 b1k f g {d} {k} = ≈-Reasoning.trans-hom A (≈-Reasoning.assoc A) (≈-Reasoning.trans-hom A (≈-Reasoning.car A (b1 f g)) (≈-Reasoning.sym A (≈-Reasoning.assoc A))) | |
956 | 59 field |
958 | 60 b2 : {a b d : Obj A} {h : Hom A d a } → (f g : Hom A a b) → A [ A [ ( α f g ) o (γ f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] |
61 b3 : {a b : Obj A} (f g : Hom A a b) → (f=g : A [ f ≈ g ]) → A [ A [ α f g o δ f g f=g ] ≈ id1 A a ] | |
62 b4 : {a b d : Obj A} (f g : Hom A a b) → {k : Hom A d (equ f g)} → | |
63 A [ A [ γ f g ( A [ α f g o k ] ) o ( δ (A [ f o A [ α f g o k ] ] ) (A [ g o A [ α f g o k ] ] ) (f1=gh (b1 f g) ) )] ≈ k ] | |
956 | 64 β : { d a b : Obj A} → (f g : Hom A a b) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d (equ f g) |
65 β {d} {a} {b} f g h eq = A [ γ f g h o δ (A [ f o h ]) (A [ g o h ]) eq ] | |
66 | |
67 open Equalizer | |
68 open IsEqualizer | |
69 open Burroni | |
70 | |
255
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
71 ------------------------------- |
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
72 -- |
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
73 -- Every equalizer is monic |
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
74 -- |
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
75 -- e i = e j → i = j |
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
76 -- |
259 | 77 -- e eqa f g f |
300 | 78 -- c ---------→ a ------→b |
259 | 79 -- ^^ |
80 -- || | |
81 -- i||j | |
82 -- || | |
83 -- d | |
255
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
84 |
963 | 85 monic : { a b d : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A f g) |
954 | 86 → { i j : Hom A d (equalizer-c eqa) } |
255
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
87 → A [ A [ equalizer eqa o i ] ≈ A [ equalizer eqa o j ] ] → A [ i ≈ j ] |
963 | 88 monic {a} {b} {d} {f} {g} eqa {i} {j} ei=ej = let open ≈-Reasoning (A) in begin |
255
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
89 i |
443 | 90 ≈↑⟨ uniqueness (isEqualizer eqa) ( begin |
255
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
91 equalizer eqa o i |
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
92 ≈⟨ ei=ej ⟩ |
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
93 equalizer eqa o j |
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
94 ∎ )⟩ |
443 | 95 k (isEqualizer eqa) (equalizer eqa o j) ( f1=gh (fe=ge (isEqualizer eqa) ) ) |
96 ≈⟨ uniqueness (isEqualizer eqa) ( begin | |
257 | 97 equalizer eqa o j |
98 ≈⟨⟩ | |
99 equalizer eqa o j | |
100 ∎ )⟩ | |
255
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
101 j |
443 | 102 ∎ |
255
7e7b2c38dee1
every equalizer is monic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
103 |
251 | 104 -------------------------------- |
225 | 105 -- |
106 -- | |
259 | 107 -- Isomorphic arrows from c' to c makes another equalizer |
225 | 108 -- |
230 | 109 -- e eqa f g f |
300 | 110 -- c ---------→ a ------→b |
230 | 111 -- |^ |
112 -- || | |
222 | 113 -- h || h-1 |
230 | 114 -- v| |
115 -- c' | |
222 | 116 |
443 | 117 equalizer+iso : {a b c' : Obj A } {f g : Hom A a b } → |
118 ( eqa : Equalizer A f g ) → | |
119 (h-1 : Hom A c' (equalizer-c eqa) ) → (h : Hom A (equalizer-c eqa) c' ) → | |
120 A [ A [ h o h-1 ] ≈ id1 A c' ] → A [ A [ h-1 o h ] ≈ id1 A (equalizer-c eqa) ] | |
121 → IsEqualizer A (A [ equalizer eqa o h-1 ] ) f g | |
122 equalizer+iso {a} {b} {c'} {f} {g} eqa h-1 h hh-1=1 h-1h=1 = record { | |
222 | 123 fe=ge = fe=ge1 ; |
443 | 124 k = λ j eq → A [ h o k (isEqualizer eqa) j eq ] ; |
230 | 125 ek=h = ek=h1 ; |
222 | 126 uniqueness = uniqueness1 |
127 } where | |
443 | 128 e = equalizer eqa |
234 | 129 fe=ge1 : A [ A [ f o A [ e o h-1 ] ] ≈ A [ g o A [ e o h-1 ] ] ] |
443 | 130 fe=ge1 = f1=gh ( fe=ge (isEqualizer eqa) ) |
222 | 131 ek=h1 : {d : Obj A} {j : Hom A d a} {eq : A [ A [ f o j ] ≈ A [ g o j ] ]} → |
443 | 132 A [ A [ A [ e o h-1 ] o A [ h o k (isEqualizer eqa) j eq ] ] ≈ j ] |
222 | 133 ek=h1 {d} {j} {eq} = let open ≈-Reasoning (A) in |
134 begin | |
443 | 135 ( e o h-1 ) o ( h o k (isEqualizer eqa) j eq ) |
234 | 136 ≈↑⟨ assoc ⟩ |
443 | 137 e o ( h-1 o ( h o k (isEqualizer eqa) j eq ) ) |
234 | 138 ≈⟨ cdr assoc ⟩ |
443 | 139 e o (( h-1 o h) o k (isEqualizer eqa) j eq ) |
234 | 140 ≈⟨ cdr (car h-1h=1 ) ⟩ |
443 | 141 e o (id1 A (equalizer-c eqa) o k (isEqualizer eqa) j eq ) |
234 | 142 ≈⟨ cdr idL ⟩ |
443 | 143 e o k (isEqualizer eqa) j eq |
144 ≈⟨ ek=h (isEqualizer eqa) ⟩ | |
222 | 145 j |
443 | 146 ∎ |
222 | 147 uniqueness1 : {d : Obj A} {h' : Hom A d a} {eq : A [ A [ f o h' ] ≈ A [ g o h' ] ]} {j : Hom A d c'} → |
234 | 148 A [ A [ A [ e o h-1 ] o j ] ≈ h' ] → |
443 | 149 A [ A [ h o k (isEqualizer eqa) h' eq ] ≈ j ] |
222 | 150 uniqueness1 {d} {h'} {eq} {j} ej=h = let open ≈-Reasoning (A) in |
151 begin | |
443 | 152 h o k (isEqualizer eqa) h' eq |
153 ≈⟨ cdr (uniqueness (isEqualizer eqa) ( begin | |
234 | 154 e o ( h-1 o j ) |
155 ≈⟨ assoc ⟩ | |
156 (e o h-1 ) o j | |
157 ≈⟨ ej=h ⟩ | |
158 h' | |
159 ∎ )) ⟩ | |
160 h o ( h-1 o j ) | |
161 ≈⟨ assoc ⟩ | |
162 (h o h-1 ) o j | |
163 ≈⟨ car hh-1=1 ⟩ | |
253 | 164 id c' o j |
234 | 165 ≈⟨ idL ⟩ |
222 | 166 j |
167 ∎ | |
168 | |
251 | 169 -------------------------------- |
225 | 170 -- |
171 -- If we have two equalizers on c and c', there are isomorphic pair h, h' | |
172 -- | |
173 -- h : c → c' h' : c' → c | |
233
4bba19bc71be
e is now explict parameter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
232
diff
changeset
|
174 -- e' = h o e |
4bba19bc71be
e is now explict parameter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
232
diff
changeset
|
175 -- e = h' o e' |
259 | 176 -- |
177 -- | |
178 -- | |
179 -- e eqa f g f | |
300 | 180 -- c ---------→a ------→b |
259 | 181 -- ^ ^ g |
182 -- | | | |
183 -- |k = id c' | | |
184 -- v | | |
185 -- c'-----------+ | |
186 -- e eqa' f g | |
225 | 187 |
233
4bba19bc71be
e is now explict parameter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
232
diff
changeset
|
188 c-iso-l : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } { e' : Hom A c' a } |
443 | 189 ( eqa : IsEqualizer A e f g) → ( eqa' : IsEqualizer A e' f g ) |
258 | 190 → Hom A c c' |
443 | 191 c-iso-l {c} {c'} {a} {b} {f} {g} {e} eqa eqa' = k eqa' e ( fe=ge eqa ) |
223 | 192 |
258 | 193 c-iso-r : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } { e' : Hom A c' a } |
443 | 194 ( eqa : IsEqualizer A e f g) → ( eqa' : IsEqualizer A e' f g ) |
258 | 195 → Hom A c' c |
443 | 196 c-iso-r {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' = k eqa e' ( fe=ge eqa' ) |
228 | 197 |
258 | 198 c-iso-lr : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } { e' : Hom A c' a } |
443 | 199 ( eqa : IsEqualizer A e f g) → ( eqa' : IsEqualizer A e' f g ) → |
258 | 200 A [ A [ c-iso-l eqa eqa' o c-iso-r eqa eqa' ] ≈ id1 A c' ] |
201 c-iso-lr {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' = let open ≈-Reasoning (A) in begin | |
202 c-iso-l eqa eqa' o c-iso-r eqa eqa' | |
250 | 203 ≈⟨⟩ |
443 | 204 k eqa' e ( fe=ge eqa ) o k eqa e' ( fe=ge eqa' ) |
258 | 205 ≈↑⟨ uniqueness eqa' ( begin |
443 | 206 e' o ( k eqa' e (fe=ge eqa) o k eqa e' (fe=ge eqa') ) |
258 | 207 ≈⟨ assoc ⟩ |
443 | 208 ( e' o k eqa' e (fe=ge eqa) ) o k eqa e' (fe=ge eqa') |
258 | 209 ≈⟨ car (ek=h eqa') ⟩ |
443 | 210 e o k eqa e' (fe=ge eqa') |
258 | 211 ≈⟨ ek=h eqa ⟩ |
212 e' | |
213 ∎ )⟩ | |
214 k eqa' e' ( fe=ge eqa' ) | |
215 ≈⟨ uniqueness eqa' ( begin | |
216 e' o id c' | |
250 | 217 ≈⟨ idR ⟩ |
258 | 218 e' |
219 ∎ )⟩ | |
253 | 220 id c' |
229
68b2681ea9df
c in equalizer is equal up to iso done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
228
diff
changeset
|
221 ∎ |
226 | 222 |
258 | 223 -- c-iso-rl is obvious from the symmetry |
234 | 224 |
954 | 225 -- |
226 -- we cannot have equalizer ≈ id. we only have Iso A (equalizer-c equ) a | |
227 -- | |
228 equ-ff : {a b : Obj A} → (f : Hom A a b ) → IsEqualizer A (id1 A a) f f | |
229 equ-ff {a} {b} f = record { | |
230 fe=ge = ≈-Reasoning.refl-hom A ; | |
231 k = λ {d} h eq → h ; | |
232 ek=h = λ {d} {h} {eq} → ≈-Reasoning.idL A ; | |
233 uniqueness = λ {d} {h} {eq} {k'} ek=h → begin | |
234 h | |
235 ≈↑⟨ ek=h ⟩ | |
236 id1 A a o k' | |
237 ≈⟨ idL ⟩ | |
238 k' | |
239 ∎ | |
240 } where open ≈-Reasoning A | |
230 | 241 |
443 | 242 |
251 | 243 -------------------------------- |
225 | 244 ---- |
245 -- | |
254 | 246 -- Existence of equalizer satisfies Burroni equations |
225 | 247 -- |
248 ---- | |
249 | |
958 | 250 lemma-equ1 : ({a b : Obj A} (f g : Hom A a b) → Equalizer A f g ) → Burroni |
251 lemma-equ1 eqa = record { | |
955 | 252 equ = λ f g → equalizer-c (eqa f g) |
253 ; α = λ f g → equalizer (eqa f g) | |
254 ; γ = λ f g h → k (isEqualizer (eqa f g )) ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) | |
956 | 255 (lemma-equ4 f g h) |
256 ; δ = λ {a} {b} f g f=g → k (isEqualizer (eqa {a} {b} f g )) {a} (id1 A a) (f1=g1 f=g _ ) | |
958 | 257 ; b1 = λ f g → fe=ge (isEqualizer (eqa f g )) |
956 | 258 ; b2 = lemma-b2 |
958 | 259 ; b3 = λ {a } {b} f g f=g → lemma-b3 f g f=g |
956 | 260 ; b4 = lemma-b4 |
261 } where | |
262 ieqa : {a b : Obj A} (f g : Hom A a b) → IsEqualizer A ( equalizer (eqa f g )) f g | |
263 ieqa f g = isEqualizer (eqa f g) | |
958 | 264 lemma-b3 : {a b : Obj A} (f g : Hom A a b ) |
956 | 265 → (f=g : A [ f ≈ g ] ) → A [ A [ equalizer (eqa f g ) o k (isEqualizer (eqa f g)) (id1 A a) (f1=g1 f=g _ ) ] ≈ id1 A a ] |
266 lemma-b3 {a} f g f=g = let open ≈-Reasoning (A) in | |
267 begin | |
268 equalizer (eqa f g) o k (isEqualizer (eqa f g)) (id a) (f1=g1 f=g _ ) | |
269 ≈⟨ ek=h (isEqualizer (eqa f g )) ⟩ | |
270 id a | |
271 ∎ | |
272 lemma-equ4 : {a b d : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → | |
273 A [ A [ f o A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] ≈ A [ g o A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] ] | |
274 lemma-equ4 {a} {b} {d} f g h = let open ≈-Reasoning (A) in | |
275 begin | |
276 f o ( h o equalizer (eqa (f o h) ( g o h ))) | |
277 ≈⟨ assoc ⟩ | |
278 (f o h) o equalizer (eqa (f o h) ( g o h )) | |
279 ≈⟨ fe=ge (isEqualizer (eqa (A [ f o h ]) (A [ g o h ]))) ⟩ | |
280 (g o h) o equalizer (eqa (f o h) ( g o h )) | |
281 ≈↑⟨ assoc ⟩ | |
282 g o ( h o equalizer (eqa (f o h) ( g o h ))) | |
283 ∎ | |
958 | 284 lemma-b2 : {a b d : Obj A} {h : Hom A d a} → (f g : Hom A a b) → A [ |
956 | 285 A [ equalizer (eqa f g) o k (isEqualizer (eqa f g)) (A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 {a} {b} f g h) ] |
286 ≈ A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] | |
958 | 287 lemma-b2 {a} {b} {d} {h} f g = let open ≈-Reasoning (A) in |
956 | 288 begin |
289 equalizer (eqa f g) o k (isEqualizer (eqa f g)) (h o equalizer (eqa (f o h) (g o h))) (lemma-equ4 {a} {b} f g h) | |
290 ≈⟨ ek=h (isEqualizer (eqa f g)) ⟩ | |
291 h o equalizer (eqa (f o h ) ( g o h )) | |
292 ∎ | |
958 | 293 lemma-b4 : {a b d : Obj A} (f g : Hom A a b) → {j : Hom A d (equalizer-c (eqa f g))} → A [ |
956 | 294 A [ k (ieqa f g) (A [ A [ equalizer (eqa f g) o j ] o |
295 equalizer (eqa (A [ f o A [ equalizer (eqa f g ) o j ] ]) (A [ g o A [ equalizer (eqa f g ) o j ] ])) ]) | |
296 (lemma-equ4 {a} {b} {d} f g (A [ equalizer (eqa f g) o j ])) | |
297 o k (ieqa (A [ f o A [ equalizer (eqa f g) o j ] ]) (A [ g o A [ equalizer (eqa f g) o j ] ])) (id1 A _) | |
298 (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _))] ≈ j ] | |
957 | 299 -- h = equalizer (eqa f g) o j |
958 | 300 lemma-b4 {a} {b} {d} f g {j} = |
956 | 301 begin |
958 | 302 k (ieqa f g) ( h o equalizer (eqa ( f o h ) ( g o h )) ) (lemma-equ4 {a} {b} {d} f g h) |
957 | 303 o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) |
304 ≈↑⟨ uniqueness (ieqa f g) ( begin | |
305 equalizer (eqa f g) o ( k (ieqa f g) (( h o equalizer (eqa ( f o h ) ( g o h )) )) (lemma-equ4 {a} {b} {d} f g h) | |
306 o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) ) | |
307 ≈⟨ assoc ⟩ | |
308 (equalizer (eqa f g) o ( k (ieqa f g) (( h o equalizer (eqa ( f o h ) ( g o h )) )) (lemma-equ4 {a} {b} {d} f g h))) | |
309 o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) | |
310 ≈⟨ car (ek=h (ieqa f g) ) ⟩ | |
311 (( h o equalizer (eqa ( f o h ) ( g o h )) )) | |
312 o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) | |
313 ≈↑⟨ assoc ⟩ | |
314 h o (equalizer (eqa ( f o h ) ( g o h )) o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _))) | |
315 ≈⟨ cdr (ek=h (ieqa (f o h) ( g o h))) ⟩ | |
316 h o id1 A _ | |
317 ≈⟨ idR ⟩ | |
318 h | |
319 ∎ | |
320 ) ⟩ | |
321 k (ieqa f g) h (f1=gh (fe=ge (ieqa f g)) ) | |
322 ≈⟨ uniqueness (ieqa f g) refl-hom ⟩ | |
956 | 323 j |
957 | 324 ∎ where |
325 open ≈-Reasoning A | |
326 h : Hom A d a | |
327 h = equalizer (eqa f g) o j | |
956 | 328 |
211 | 329 |
251 | 330 -------------------------------- |
331 -- | |
332 -- Bourroni equations gives an Equalizer | |
333 -- | |
211 | 334 |
963 | 335 lemma-equ2 : {a b : Obj A} (f g : Hom A a b) → ( bur : Burroni ) → IsEqualizer A {equ bur f g} {a} {b} (α bur f g ) f g |
962 | 336 lemma-equ2 {a} {b} f g bur = record { |
238
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
337 fe=ge = fe=ge1 ; |
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
338 k = k1 ; |
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
339 ek=h = λ {d} {h} {eq} → ek=h1 {d} {h} {eq} ; |
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
340 uniqueness = λ {d} {h} {eq} {k'} ek=h → uniqueness1 {d} {h} {eq} {k'} ek=h |
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
341 } where |
955 | 342 c : Obj A |
343 c = equ bur f g | |
344 e : Hom A c a | |
345 e = α bur f g | |
238
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
346 k1 : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c |
955 | 347 k1 {d} h fh=gh = β bur {d} {a} {b} f g h fh=gh |
348 fe=ge1 : A [ A [ f o (α bur f g ) ] ≈ A [ g o (α bur f g ) ] ] | |
958 | 349 fe=ge1 = b1 bur f g |
955 | 350 ek=h1 : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → A [ A [ (α bur f g ) o k1 {d} h eq ] ≈ h ] |
238
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
351 ek=h1 {d} {h} {eq} = let open ≈-Reasoning (A) in |
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
352 begin |
955 | 353 α bur f g o k1 h eq |
958 | 354 ≈⟨ assoc ⟩ |
355 (α bur f g o γ bur f g h) o δ bur (f o h) (g o h) eq | |
356 ≈⟨ car (b2 bur f g) ⟩ | |
357 ( h o α bur ( f o h ) ( g o h ) ) o δ bur (f o h) (g o h) eq | |
358 ≈↑⟨ assoc ⟩ | |
359 h o α bur (f o h) (g o h) o δ bur (f o h) (g o h) eq | |
360 ≈⟨ cdr ( b3 bur (f o h) (g o h) eq ) ⟩ | |
253 | 361 h o id d |
240 | 362 ≈⟨ idR ⟩ |
238
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
363 h |
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
364 ∎ |
961 | 365 |
366 -- e f | |
367 -- c -------→ a ---------→ b | |
368 -- ^ . ---------→ | |
369 -- | . g | |
370 -- |k . | |
371 -- | . h | |
372 -- d | |
373 | |
962 | 374 postulate |
375 uniqueness1 : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → {k' : Hom A d c } → | |
376 A [ A [ (α bur f g ) o k' ] ≈ h ] → A [ k1 {d} h eq ≈ k' ] | |
377 -- uniqueness1 {d} {h} {eq} {k'} ek=h = | |
378 -- begin | |
379 -- k1 {d} h eq | |
380 -- ≈⟨⟩ | |
381 -- γ bur f g h o δ bur (f o h) (g o h) eq | |
382 -- ≈⟨ ? ⟩ -- without locality, we cannot simply replace h with (α bur f g o k' | |
383 -- γ bur f g (α bur f g o k' ) o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g ))) | |
384 -- ≈⟨ b4 bur f g ⟩ | |
385 -- k' | |
386 -- ∎ | |
238
c8db99cdf72a
Burrnoi to Equalizer problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
237
diff
changeset
|
387 |
225 | 388 -- end |
212 | 389 |
390 | |
391 | |
215 | 392 |
393 |