Mercurial > hg > Members > kono > Proof > category
annotate freyd.agda @ 308:7f00cd09274c
pre-initial
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jan 2014 19:02:29 +0900 |
parents | 9872bddec072 |
children | e213595b845e |
rev | line source |
---|---|
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Category -- https://github.com/konn/category-agda |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Level |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
3 open import Category.Sets |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 module freyd {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 where |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 |
307
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
8 open import cat-utility |
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 open import Relation.Binary.Core |
307
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
10 open Functor |
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
11 |
306
92475fe5f59e
Small Full Subcategory (underconstruction)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
305
diff
changeset
|
12 -- C is small full subcategory of A |
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
13 |
307
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
14 record SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
15 (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) |
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
16 : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where |
306
92475fe5f59e
Small Full Subcategory (underconstruction)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
305
diff
changeset
|
17 field |
307
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
18 ≈→≡ : {a b : Obj A } → { x y : Hom A (FObj F a) (FObj F b) } → |
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
19 (x≈y : A [ FMap F x ≈ FMap F y ]) → FMap F x ≡ FMap F y -- co-comain of FMap is local small |
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
20 full→ : { a b : Obj A } { x : Hom A (FObj F a) (FObj F b) } → A [ FMap F ( FMap← x ) ≈ x ] |
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
21 full← : { a b : Obj A } { x : Hom A a b } → A [ FMap← ( FMap F x ) ≈ x ] |
305 | 22 |
308 | 23 record PreInitial-SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
24 (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) | |
25 (SFS : SmallFullSubcategory A F FMap← ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where | |
26 field | |
27 pre-initial : ∀{ a : Obj A } → { a' : Obj A } → Hom A ( FObj F a' ) a | |
28 uniqueness : ∀{ a : Obj A } → { a' : Obj A } → ( f' : Hom A ( FObj F a' ) a ) → | |
29 A [ f' ≈ pre-initial {a} {a'} ] | |
30 |