annotate Putil.agda @ 81:59aaf2000591

plist0
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 26 Aug 2020 19:09:32 +0900
parents b0c344ece453
children 2d79a2c06c6c
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
48
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
1 module Putil where
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 open import Level hiding ( suc ; zero )
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 open import Algebra
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import Algebra.Structures
37
32db08b3c1a3 emumelation done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 36
diff changeset
6 open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ )
41
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 40
diff changeset
7 open import Data.Fin.Properties hiding ( <-trans ; ≤-trans ) renaming ( <-cmp to <-fcmp )
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Data.Fin.Permutation
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Function hiding (id ; flip)
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Function.LeftInverse using ( _LeftInverseOf_ )
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open import Function.Equality using (Π)
17
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 16
diff changeset
13 open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 16
diff changeset
14 open import Data.Nat.Properties -- using (<-trans)
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
15 open import Relation.Binary.PropositionalEquality
80
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
16 open import Data.List using (List; []; _∷_ ; length ; _++_ ; head ; tail ) renaming (reverse to rev )
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
17 open import nat
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18
48
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
19 open import Symmetric
0
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20
dc677bac3c54 Permutation group
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
22 open import Relation.Nullary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
23 open import Data.Empty
17
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 16
diff changeset
24 open import Relation.Binary.Core
80
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
25 open import Relation.Binary.Definitions
17
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 16
diff changeset
26 open import fin
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
27
38
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 37
diff changeset
28 -- An inductive construction of permutation
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
29
59
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
30 -- Todo
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
31 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
32 -- complete perm→FL
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
33 -- describe property of pprep and pswap
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
34 -- describe property of pins ( move 0 to any position)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
35 -- describe property of shrink ( remove one column )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
36 -- prove FL→iso
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
37 -- prove FL←iso
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
38 -- prove FL enumerate all permutations
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
39
48
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
40 -- we already have refl and trans in the Symmetric Group
41
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 40
diff changeset
41
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
42 pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n)
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
43 pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where
33
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 32
diff changeset
44 p→ : Fin (suc n) → Fin (suc n)
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
45 p→ zero = zero
60
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
46 p→ (suc x) = suc ( perm ⟨$⟩ʳ x)
33
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 32
diff changeset
47
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
48 p← : Fin (suc n) → Fin (suc n)
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
49 p← zero = zero
60
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
50 p← (suc x) = suc ( perm ⟨$⟩ˡ x)
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
51
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
52 piso← : (x : Fin (suc n)) → p→ ( p← x ) ≡ x
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
53 piso← zero = refl
60
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
54 piso← (suc x) = cong (λ k → suc k ) (inverseʳ perm)
33
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 32
diff changeset
55
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
56 piso→ : (x : Fin (suc n)) → p← ( p→ x ) ≡ x
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
57 piso→ zero = refl
60
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
58 piso→ (suc x) = cong (λ k → suc k ) (inverseˡ perm)
33
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 32
diff changeset
59
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
60 pswap : {n : ℕ } → Permutation n n → Permutation (suc (suc n)) (suc (suc n ))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
61 pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
62 p→ : Fin (suc (suc n)) → Fin (suc (suc n))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
63 p→ zero = suc zero
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
64 p→ (suc zero) = zero
62
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 61
diff changeset
65 p→ (suc (suc x)) = suc ( suc ( perm ⟨$⟩ʳ x) )
18
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 17
diff changeset
66
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
67 p← : Fin (suc (suc n)) → Fin (suc (suc n))
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
68 p← zero = suc zero
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
69 p← (suc zero) = zero
62
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 61
diff changeset
70 p← (suc (suc x)) = suc ( suc ( perm ⟨$⟩ˡ x) )
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
71
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
72 piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
73 piso← zero = refl
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
74 piso← (suc zero) = refl
62
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 61
diff changeset
75 piso← (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseʳ perm)
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 7
diff changeset
76
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
77 piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
78 piso→ zero = refl
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
79 piso→ (suc zero) = refl
62
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 61
diff changeset
80 piso→ (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseˡ perm)
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
81
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
82 -- enumeration
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
83
44
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
84 psawpn : {n : ℕ} → 1 < n → Permutation n n
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
85 psawpn {suc zero} (s≤s ())
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
86 psawpn {suc n} (s≤s (s≤s x)) = pswap pid
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
87
35
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 34
diff changeset
88 pfill : { n m : ℕ } → m ≤ n → Permutation m m → Permutation n n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 34
diff changeset
89 pfill {n} {m} m≤n perm = pfill1 (n - m) (n-m<n n m ) (subst (λ k → Permutation k k ) (n-n-m=m m≤n ) perm) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 34
diff changeset
90 pfill1 : (i : ℕ ) → i ≤ n → Permutation (n - i) (n - i) → Permutation n n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 34
diff changeset
91 pfill1 0 _ perm = perm
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 34
diff changeset
92 pfill1 (suc i) i<n perm = pfill1 i (≤to< i<n) (subst (λ k → Permutation k k ) (si-sn=i-n i<n ) ( pprep perm ) )
34
c9dbbe12a03b inductive
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
93
48
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
94 --
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
95 -- psawpim (inseert swap at position m )
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
96 --
45
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
97 psawpim : {n m : ℕ} → suc (suc m) ≤ n → Permutation n n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
98 psawpim {n} {m} m≤n = pfill m≤n ( psawpn (s≤s (s≤s z≤n)) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
99
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
100 n≤ : (i : ℕ ) → {j : ℕ } → i ≤ i + j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
101 n≤ (zero) {j} = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
102 n≤ (suc i) {j} = s≤s ( n≤ i )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
103
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
104 lem0 : {n : ℕ } → n ≤ n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
105 lem0 {zero} = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
106 lem0 {suc n} = s≤s lem0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
107
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
108 lem00 : {n m : ℕ } → n ≡ m → n ≤ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
109 lem00 refl = lem0
44
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
110
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
111 -- pconcat : {n m : ℕ } → Permutation m m → Permutation n n → Permutation (m + n) (m + n)
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
112 -- pconcat {n} {m} p q = pfill {n + m} {m} ? p ∘ₚ ?
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
113
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
114 -- inductivley enmumerate permutations
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
115 -- from n-1 length create n length inserting new element at position m
9ce6141ef479 start again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 41
diff changeset
116
48
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
117 -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ []
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
118 -- 1 ∷ 0 ∷ 2 ∷ 3 ∷ [] plist ( pins {3} (n≤ 1) )
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
119 -- 1 ∷ 2 ∷ 0 ∷ 3 ∷ []
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
120 -- 1 ∷ 2 ∷ 3 ∷ 0 ∷ []
45
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 44
diff changeset
121
48
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
122 pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n)
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
123 pins {_} {zero} _ = pid
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
124 pins {suc _} {suc zero} _ = pswap pid
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
125 pins {suc (suc n)} {suc m} (s≤s m<n) = pins1 (suc m) (suc (suc n)) lem0 where
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
126 pins1 : (i j : ℕ ) → j ≤ suc (suc n) → Permutation (suc (suc (suc n ))) (suc (suc (suc n)))
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
127 pins1 _ zero _ = pid
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
128 pins1 zero _ _ = pid
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
129 pins1 (suc i) (suc j) (s≤s si≤n) = psawpim {suc (suc (suc n))} {j} (s≤s (s≤s si≤n)) ∘ₚ pins1 i j (≤-trans si≤n refl-≤s )
37
32db08b3c1a3 emumelation done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 36
diff changeset
130
80
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
131 plist1 : {n : ℕ} → Permutation (suc n) (suc n) → (i : ℕ ) → i < suc n → List ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
132 plist1 {n} perm zero _ = toℕ ( perm ⟨$⟩ˡ (fromℕ< {zero} (s≤s z≤n))) ∷ []
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
133 plist1 {n} perm (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ< (s≤s lt))) ∷ plist1 perm i (<-trans lt a<sa)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
134
37
32db08b3c1a3 emumelation done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 36
diff changeset
135 plist : {n : ℕ} → Permutation n n → List ℕ
32db08b3c1a3 emumelation done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 36
diff changeset
136 plist {0} perm = []
80
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
137 plist {suc n} perm = rev (plist1 perm n a<sa)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
138
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
139 plist2 : {n : ℕ} → Permutation (suc n) (suc n) → (i : ℕ ) → i < suc n → List ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
140 plist2 {n} perm zero _ = toℕ ( perm ⟨$⟩ʳ (fromℕ< {zero} (s≤s z≤n))) ∷ []
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
141 plist2 {n} perm (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ʳ (fromℕ< (s≤s lt))) ∷ plist2 perm i (<-trans lt a<sa)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
142
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
143 plist0 : {n : ℕ} → Permutation n n → List ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
144 plist0 {0} perm = []
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
145 plist0 {suc n} perm = plist2 perm n a<sa
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
148 headeq : {A : Set } → {x y : A } → {xt yt : List A } → (x ∷ xt) ≡ (y ∷ yt) → x ≡ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
149 headeq refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
150
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
151 taileq : {A : Set } → {x y : A } → {xt yt : List A } → (x ∷ xt) ≡ (y ∷ yt) → xt ≡ yt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
152 taileq refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
153
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
154 pleq : {n : ℕ} → (x y : Permutation n n ) → plist0 x ≡ plist0 y → x =p= y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
155 pleq {0} x y refl = record { peq = λ q → pleq0 q } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
156 pleq0 : (q : Fin 0 ) → (x ⟨$⟩ʳ q) ≡ (y ⟨$⟩ʳ q)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
157 pleq0 ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
158 pleq {suc n} x y eq = record { peq = λ q → pleq1 n a<sa eq q fin<n } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
159 pleq1 : (i : ℕ ) → (i<sn : i < suc n ) → plist2 x i i<sn ≡ plist2 y i i<sn → (q : Fin (suc n)) → toℕ q < suc i → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q
81
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
160 pleq1 zero i<sn eq q q<i with <-cmp (toℕ q) zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
161 ... | tri< () ¬b ¬c
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
162 ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c q<i )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
163 ... | tri≈ ¬a b ¬c = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
164 x ⟨$⟩ʳ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
165 ≡⟨ cong ( λ k → x ⟨$⟩ʳ k ) (toℕ-injective b )⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
166 x ⟨$⟩ʳ zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
167 ≡⟨ toℕ-injective (headeq eq) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
168 y ⟨$⟩ʳ zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
169 ≡⟨ cong ( λ k → y ⟨$⟩ʳ k ) (sym (toℕ-injective b )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
170 y ⟨$⟩ʳ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
171 ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
172 open ≡-Reasoning
80
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
173 pleq1 (suc i) (s≤s i<sn) eq q q<i with <-cmp (toℕ q) (suc i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
174 ... | tri< a ¬b ¬c = pleq1 i (<-trans i<sn a<sa ) (taileq eq) q a
81
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
175 ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c q<i )
80
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
176 ... | tri≈ ¬a b ¬c = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
177 x ⟨$⟩ʳ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
178 ≡⟨ cong (λ k → x ⟨$⟩ʳ k) (pleq3 b) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
179 x ⟨$⟩ʳ (suc (fromℕ< i<sn))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
180 ≡⟨ toℕ-injective pleq2 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
181 y ⟨$⟩ʳ (suc (fromℕ< i<sn))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
182 ≡⟨ cong (λ k → y ⟨$⟩ʳ k) (sym (pleq3 b)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
183 y ⟨$⟩ʳ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
184 ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
185 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
186 pleq3 : toℕ q ≡ suc i → q ≡ suc (fromℕ< i<sn)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
187 pleq3 tq=si = toℕ-injective ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
188 toℕ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
189 ≡⟨ b ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
190 suc i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
191 ≡⟨ sym (toℕ-fromℕ< (s≤s i<sn)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
192 toℕ (fromℕ< (s≤s i<sn))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
193 ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
194 toℕ (suc (fromℕ< i<sn))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
195 ∎ ) where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
196 pleq2 : toℕ ( x ⟨$⟩ʳ (suc (fromℕ< i<sn)) ) ≡ toℕ ( y ⟨$⟩ʳ (suc (fromℕ< i<sn)) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
197 pleq2 = headeq eq
37
32db08b3c1a3 emumelation done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 36
diff changeset
198
49
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
199 data FL : (n : ℕ )→ Set where
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
200 f0 : FL 0
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
201 _::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n)
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
202
50
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
203 open import logic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
204
56
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 55
diff changeset
205 -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] → 0 ∷ 1 ∷ 2 ∷ []
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
206 shrink : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → perm ⟨$⟩ˡ (# 0) ≡ # 0 → Permutation n n
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
207 shrink {n} perm p0=0 = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
208 shlem→ : (x : Fin (suc n) ) → perm ⟨$⟩ˡ x ≡ zero → x ≡ zero
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
209 shlem→ x px=0 = begin
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
210 x ≡⟨ sym ( inverseʳ perm ) ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
211 perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ x) ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) px=0 ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
212 perm ⟨$⟩ʳ zero ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) (sym p0=0) ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
213 perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ zero) ≡⟨ inverseʳ perm ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
214 zero
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
215 ∎ where open ≡-Reasoning
54
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 53
diff changeset
216
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
217 shlem← : (x : Fin (suc n)) → perm ⟨$⟩ʳ x ≡ zero → x ≡ zero
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
218 shlem← x px=0 = begin
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
219 x ≡⟨ sym (inverseˡ perm ) ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
220 perm ⟨$⟩ˡ ( perm ⟨$⟩ʳ x ) ≡⟨ cong (λ k → perm ⟨$⟩ˡ k ) px=0 ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
221 perm ⟨$⟩ˡ zero ≡⟨ p0=0 ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
222 zero
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
223 ∎ where open ≡-Reasoning
54
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 53
diff changeset
224
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
225 sh2 : {x : Fin n} → ¬ perm ⟨$⟩ˡ (suc x) ≡ zero
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
226 sh2 {x} eq with shlem→ (suc x) eq
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
227 sh2 {x} eq | ()
57
518d364a58a3 shrink worked
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
228
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
229 p→ : Fin n → Fin n
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
230 p→ x with perm ⟨$⟩ˡ (suc x) | inspect (_⟨$⟩ˡ_ perm ) (suc x)
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
231 p→ x | zero | record { eq = e } = ⊥-elim ( sh2 {x} e )
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
232 p→ x | suc t | _ = t
50
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
233
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
234 sh1 : {x : Fin n} → ¬ perm ⟨$⟩ʳ (suc x) ≡ zero
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
235 sh1 {x} eq with shlem← (suc x) eq
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
236 sh1 {x} eq | ()
50
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
238 p← : Fin n → Fin n
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
239 p← x with perm ⟨$⟩ʳ (suc x) | inspect (_⟨$⟩ʳ_ perm ) (suc x)
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
240 p← x | zero | record { eq = e } = ⊥-elim ( sh1 {x} e )
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
241 p← x | suc t | _ = t
50
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
243 piso← : (x : Fin n ) → p→ ( p← x ) ≡ x
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
244 piso← x with perm ⟨$⟩ʳ (suc x) | inspect (_⟨$⟩ʳ_ perm ) (suc x)
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
245 piso← x | zero | record { eq = e } = ⊥-elim ( sh1 {x} e )
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
246 piso← x | suc t | _ with perm ⟨$⟩ˡ (suc t) | inspect (_⟨$⟩ˡ_ perm ) (suc t)
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
247 piso← x | suc t | _ | zero | record { eq = e } = ⊥-elim ( sh2 e )
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
248 piso← x | suc t | record { eq = e0 } | suc t1 | record { eq = e1 } = begin
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
249 t1
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
250 ≡⟨ plem0 plem1 ⟩
52
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 51
diff changeset
251 x
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
252 ∎ where
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
253 open ≡-Reasoning
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
254 plem0 : suc t1 ≡ suc x → t1 ≡ x
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
255 plem0 refl = refl
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
256 plem1 : suc t1 ≡ suc x
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
257 plem1 = begin
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
258 suc t1
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
259 ≡⟨ sym e1 ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
260 Inverse.from perm Π.⟨$⟩ suc t
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
261 ≡⟨ cong (λ k → Inverse.from perm Π.⟨$⟩ k ) (sym e0 ) ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
262 Inverse.from perm Π.⟨$⟩ ( Inverse.to perm Π.⟨$⟩ suc x )
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
263 ≡⟨ inverseˡ perm ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
264 suc x
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
265
50
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
267 piso→ : (x : Fin n ) → p← ( p→ x ) ≡ x
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
268 piso→ x with perm ⟨$⟩ˡ (suc x) | inspect (_⟨$⟩ˡ_ perm ) (suc x)
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
269 piso→ x | zero | record { eq = e } = ⊥-elim ( sh2 {x} e )
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
270 piso→ x | suc t | _ with perm ⟨$⟩ʳ (suc t) | inspect (_⟨$⟩ʳ_ perm ) (suc t)
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
271 piso→ x | suc t | _ | zero | record { eq = e } = ⊥-elim ( sh1 e )
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
272 piso→ x | suc t | record { eq = e0 } | suc t1 | record { eq = e1 } = begin
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
273 t1
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
274 ≡⟨ plem2 plem3 ⟩
53
2283d6f8a2fb connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 52
diff changeset
275 x
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
276 ∎ where
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
277 open ≡-Reasoning
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
278 plem2 : suc t1 ≡ suc x → t1 ≡ x
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
279 plem2 refl = refl
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
280 plem3 : suc t1 ≡ suc x
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
281 plem3 = begin
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
282 suc t1
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
283 ≡⟨ sym e1 ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
284 Inverse.to perm Π.⟨$⟩ suc t
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
285 ≡⟨ cong (λ k → Inverse.to perm Π.⟨$⟩ k ) (sym e0 ) ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
286 Inverse.to perm Π.⟨$⟩ ( Inverse.from perm Π.⟨$⟩ suc x )
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
287 ≡⟨ inverseʳ perm ⟩
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
288 suc x
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
289
57
518d364a58a3 shrink worked
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
290
518d364a58a3 shrink worked
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
291 FL→perm : {n : ℕ } → FL n → Permutation n n
518d364a58a3 shrink worked
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
292 FL→perm f0 = pid
518d364a58a3 shrink worked
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
293 FL→perm (x :: fl) = pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x )
518d364a58a3 shrink worked
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
294
60
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
295 t40 = (# 2) :: ( (# 1) :: (( # 0 ) :: f0 ))
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
296 t4 = FL→perm ((# 2) :: t40 )
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
297
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
298 -- t1 = plist (shrink (pid {3} ∘ₚ (pins (n≤ 1))) refl)
60
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
299 t2 = plist ((pid {5} ) ∘ₚ transpose (# 2) (# 4)) ∷ plist (pid {5} ∘ₚ reverse ) ∷ []
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
300 t3 = plist (FL→perm t40) -- ∷ plist (pprep (FL→perm t40))
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
301 -- ∷ plist ( pprep (FL→perm t40) ∘ₚ pins ( n≤ 0 {3} ))
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
302 -- ∷ plist ( pprep (FL→perm t40 )∘ₚ pins ( n≤ 1 {2} ))
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
303 -- ∷ plist ( pprep (FL→perm t40 )∘ₚ pins ( n≤ 2 {1} ))
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
304 -- ∷ plist ( pprep (FL→perm t40 )∘ₚ pins ( n≤ 3 {0} ))
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
305 ∷ plist ( FL→perm ((# 0) :: t40)) -- (0 ∷ 1 ∷ 2 ∷ []) ∷
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
306 ∷ plist ( FL→perm ((# 1) :: t40)) -- (0 ∷ 2 ∷ 1 ∷ []) ∷
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
307 ∷ plist ( FL→perm ((# 2) :: t40)) -- (1 ∷ 0 ∷ 2 ∷ []) ∷
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
308 ∷ plist ( FL→perm ((# 3) :: t40)) -- (2 ∷ 0 ∷ 1 ∷ []) ∷
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
309 -- ∷ plist ( FL→perm ((# 3) :: ((# 2) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) -- (1 ∷ 2 ∷ 0 ∷ []) ∷
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
310 -- ∷ plist ( FL→perm ((# 3) :: ((# 2) :: ( (# 1) :: (( # 0 ) :: f0 )) ))) -- (2 ∷ 1 ∷ 0 ∷ []) ∷
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
311 -- ∷ plist ( (flip (FL→perm ((# 3) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) )))))
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
312 -- ∷ plist ( (flip (FL→perm ((# 3) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) ∘ₚ (FL→perm ((# 3) :: (((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) )))) ))
57
518d364a58a3 shrink worked
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
313 ∷ []
50
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 49
diff changeset
314
64
537903b159ef postulate
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 63
diff changeset
315 -- postulate
537903b159ef postulate
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 63
diff changeset
316 -- p=0 : {n : ℕ } → (perm : Permutation (suc n) (suc n) ) → ((perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) ⟨$⟩ˡ (# 0)) ≡ # 0
58
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
317
49
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
318 perm→FL : {n : ℕ } → Permutation n n → FL n
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
319 perm→FL {zero} perm = f0
64
537903b159ef postulate
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 63
diff changeset
320 perm→FL {suc n} perm = (perm ⟨$⟩ʳ (# 0)) :: perm→FL (remove (# 0) perm)
537903b159ef postulate
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 63
diff changeset
321 -- perm→FL {suc n} perm = (perm ⟨$⟩ʳ (# 0)) :: perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) )
60
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
322
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
323 -- t5 = plist t4 ∷ plist ( t4 ∘ₚ flip (pins ( n≤ 3 ) ))
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
324 t5 = plist (t4) ∷ plist (flip t4)
74
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
325 ∷ ( toℕ (t4 ⟨$⟩ˡ fromℕ< a<sa) ∷ [] )
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
326 ∷ ( toℕ (t4 ⟨$⟩ʳ (# 0)) ∷ [] )
60
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
327 -- ∷ plist ( t4 ∘ₚ flip (pins ( n≤ 1 ) ))
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
328 ∷ plist (remove (# 0) t4 )
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
329 ∷ plist ( FL→perm t40 )
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
330 ∷ []
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
331
48926e810f5f perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
332 t6 = perm→FL t4
49
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
333
63
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 62
diff changeset
334 postulate
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 62
diff changeset
335 FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 62
diff changeset
336 -- FL→iso f0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 62
diff changeset
337 -- FL→iso (x :: fl) = {!!} -- with FL→iso fl
61
c16749815259 another shrink
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 60
diff changeset
338 -- ... | t = {!!}
49
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
339
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
340 open _=p=_
63
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 62
diff changeset
341 postulate
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 62
diff changeset
342 FL←iso : {n : ℕ } → (perm : Permutation n n ) → FL→perm ( perm→FL perm ) =p= perm
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 62
diff changeset
343 -- FL←iso {0} perm = record { peq = λ () }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 62
diff changeset
344 -- FL←iso {suc n} perm = {!!}
49
8b3b95362ca9 remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 48
diff changeset
345
66
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 65
diff changeset
346 lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 65
diff changeset
347 lem2 i≤n = ≤-trans i≤n ( refl-≤s )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 65
diff changeset
348
67
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
349 ∀-FL : (n : ℕ ) → List (FL (suc n))
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
350 ∀-FL x = fls6 x where
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
351 fls4 : ( i n : ℕ ) → (i<n : i ≤ n ) → FL n → List (FL (suc n)) → List (FL (suc n))
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
352 fls4 zero n i≤n perm x = (zero :: perm ) ∷ x
74
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
353 fls4 (suc i) n i≤n perm x = fls4 i n (≤-trans refl-≤s i≤n ) perm ((fromℕ< (s≤s i≤n) :: perm ) ∷ x)
67
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
354 fls5 : ( n : ℕ ) → List (FL n) → List (FL (suc n)) → List (FL (suc n))
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
355 fls5 n [] x = x
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
356 fls5 n (h ∷ x) y = fls5 n x (fls4 n n lem0 h y)
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
357 fls6 : ( n : ℕ ) → List (FL (suc n))
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
358 fls6 zero = (zero :: f0) ∷ []
3825082ebdbd ∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
359 fls6 (suc n) = fls5 (suc n) (fls6 n) []
65
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 64
diff changeset
360
48
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
361 all-perm : (n : ℕ ) → List (Permutation (suc n) (suc n) )
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
362 all-perm n = pls6 n where
38
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 37
diff changeset
363 lem1 : {i n : ℕ } → i ≤ n → i < suc n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 37
diff changeset
364 lem1 z≤n = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 37
diff changeset
365 lem1 (s≤s lt) = s≤s (lem1 lt)
40
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 39
diff changeset
366 pls4 : ( i n : ℕ ) → (i<n : i ≤ n ) → Permutation n n → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n))
48
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
367 pls4 zero n i≤n perm x = (pprep perm ∘ₚ pins i≤n ) ∷ x
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
368 pls4 (suc i) n i≤n perm x = pls4 i n (≤-trans refl-≤s i≤n ) perm (pprep perm ∘ₚ pins {n} {suc i} i≤n ∷ x)
40
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 39
diff changeset
369 pls5 : ( n : ℕ ) → List (Permutation n n) → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 39
diff changeset
370 pls5 n [] x = x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 39
diff changeset
371 pls5 n (h ∷ x) y = pls5 n x (pls4 n n lem0 h y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 39
diff changeset
372 pls6 : ( n : ℕ ) → List (Permutation (suc n) (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 39
diff changeset
373 pls6 zero = pid ∷ []
48
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
374 pls6 (suc n) = pls5 (suc n) (rev (pls6 n) ) [] -- rev to put id first
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
375
ac2f21a2d467 cleanup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 47
diff changeset
376 pls : (n : ℕ ) → List (List ℕ )
75
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
377 pls n = Data.List.map plist (all-perm n)