Mercurial > hg > Members > kono > Proof > category
annotate kleisli.agda @ 639:4cf8f982dc5b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Jul 2017 02:18:57 +0900 |
parents | 2d32ded94aaf |
children | a5f2ca67e7c5 |
rev | line source |
---|---|
82 | 1 -- -- -- -- -- -- -- -- |
153 | 2 -- Monad to Kelisli Category |
82 | 3 -- defines U_T and F_T as a resolution of Monad |
4 -- checks Adjointness | |
5 -- | |
6 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
7 -- -- -- -- -- -- -- -- | |
0 | 8 |
9 -- Monad | |
10 -- Category A | |
11 -- A = Category | |
22 | 12 -- Functor T : A → A |
0 | 13 --T(a) = t(a) |
14 --T(f) = tf(f) | |
15 | |
2 | 16 open import Category -- https://github.com/konn/category-agda |
0 | 17 open import Level |
56 | 18 --open import Category.HomReasoning |
19 open import HomReasoning | |
20 open import cat-utility | |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
21 open import Category.Cat |
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
22 |
152 | 23 module kleisli { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
24 { T : Functor A A } |
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
25 { η : NTrans A A identityFunctor T } |
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
26 { μ : NTrans A A (T ○ T) T } |
130 | 27 { M : Monad A T η μ } where |
0 | 28 |
1 | 29 --T(g f) = T(g) T(f) |
30 | |
31 | 31 open Functor |
22 | 32 Lemma1 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} (T : Functor A A) → {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } |
33 → A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ] | |
300 | 34 Lemma1 = λ t → IsFunctor.distr ( isFunctor t ) |
0 | 35 |
36 | |
7 | 37 open NTrans |
1 | 38 Lemma2 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} {F G : Functor A A} |
22 | 39 → (μ : NTrans A A F G) → {a b : Obj A} { f : Hom A a b } |
30 | 40 → A [ A [ FMap G f o TMap μ a ] ≈ A [ TMap μ b o FMap F f ] ] |
300 | 41 Lemma2 = λ n → IsNTrans.commute ( isNTrans n ) |
0 | 42 |
82 | 43 -- Laws of Monad |
44 -- | |
22 | 45 -- η : 1_A → T |
46 -- μ : TT → T | |
82 | 47 -- μ(a)η(T(a)) = a -- unity law 1 |
48 -- μ(a)T(η(a)) = a -- unity law 2 | |
49 -- μ(a)(μ(T(a))) = μ(a)T(μ(a)) -- association law | |
0 | 50 |
51 | |
2 | 52 open Monad |
53 Lemma3 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} | |
54 { T : Functor A A } | |
7 | 55 { η : NTrans A A identityFunctor T } |
56 { μ : NTrans A A (T ○ T) T } | |
22 | 57 { a : Obj A } → |
2 | 58 ( M : Monad A T η μ ) |
30 | 59 → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] |
300 | 60 Lemma3 = λ m → IsMonad.assoc ( isMonad m ) |
2 | 61 |
62 | |
63 Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b} | |
22 | 64 → A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ] |
300 | 65 Lemma4 = λ a → IsCategory.identityL ( Category.isCategory a ) |
0 | 66 |
3 | 67 Lemma5 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} |
68 { T : Functor A A } | |
7 | 69 { η : NTrans A A identityFunctor T } |
70 { μ : NTrans A A (T ○ T) T } | |
22 | 71 { a : Obj A } → |
3 | 72 ( M : Monad A T η μ ) |
30 | 73 → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] |
300 | 74 Lemma5 = λ m → IsMonad.unity1 ( isMonad m ) |
3 | 75 |
76 Lemma6 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} | |
77 { T : Functor A A } | |
7 | 78 { η : NTrans A A identityFunctor T } |
79 { μ : NTrans A A (T ○ T) T } | |
22 | 80 { a : Obj A } → |
3 | 81 ( M : Monad A T η μ ) |
30 | 82 → A [ A [ TMap μ a o (FMap T (TMap η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] |
300 | 83 Lemma6 = λ m → IsMonad.unity2 ( isMonad m ) |
3 | 84 |
82 | 85 -- Laws of Kleisli Category |
86 -- | |
0 | 87 -- nat of η |
82 | 88 -- g ○ f = μ(c) T(g) f -- join definition |
89 -- η(b) ○ f = f -- left id (Lemma7) | |
90 -- f ○ η(a) = f -- right id (Lemma8) | |
91 -- h ○ (g ○ f) = (h ○ g) ○ f -- assocation law (Lemma9) | |
11 | 92 |
22 | 93 -- η(b) ○ f = f |
73 | 94 Lemma7 : { a : Obj A } { b : Obj A } ( f : Hom A a ( FObj T b) ) |
130 | 95 → A [ join M (TMap η b) f ≈ f ] |
73 | 96 Lemma7 {_} {b} f = |
97 let open ≈-Reasoning (A) in | |
21 | 98 begin |
130 | 99 join M (TMap η b) f |
21 | 100 ≈⟨ refl-hom ⟩ |
73 | 101 A [ TMap μ b o A [ FMap T ((TMap η b)) o f ] ] |
102 ≈⟨ IsCategory.associative (Category.isCategory A) ⟩ | |
103 A [ A [ TMap μ b o FMap T ((TMap η b)) ] o f ] | |
130 | 104 ≈⟨ car ( IsMonad.unity2 ( isMonad M) ) ⟩ |
73 | 105 A [ id (FObj T b) o f ] |
106 ≈⟨ IsCategory.identityL (Category.isCategory A) ⟩ | |
21 | 107 f |
108 ∎ | |
7 | 109 |
22 | 110 -- f ○ η(a) = f |
73 | 111 Lemma8 : { a : Obj A } { b : Obj A } |
22 | 112 ( f : Hom A a ( FObj T b) ) |
130 | 113 → A [ join M f (TMap η a) ≈ f ] |
73 | 114 Lemma8 {a} {b} f = |
22 | 115 begin |
130 | 116 join M f (TMap η a) |
22 | 117 ≈⟨ refl-hom ⟩ |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
118 A [ TMap μ b o A [ FMap T f o (TMap η a) ] ] |
66 | 119 ≈⟨ cdr ( nat η ) ⟩ |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
120 A [ TMap μ b o A [ (TMap η ( FObj T b)) o f ] ] |
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
121 ≈⟨ IsCategory.associative (Category.isCategory A) ⟩ |
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
122 A [ A [ TMap μ b o (TMap η ( FObj T b)) ] o f ] |
130 | 123 ≈⟨ car ( IsMonad.unity1 ( isMonad M) ) ⟩ |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
124 A [ id (FObj T b) o f ] |
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
125 ≈⟨ IsCategory.identityL (Category.isCategory A) ⟩ |
22 | 126 f |
127 ∎ where | |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
128 open ≈-Reasoning (A) |
5 | 129 |
22 | 130 -- h ○ (g ○ f) = (h ○ g) ○ f |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
131 Lemma9 : { a b c d : Obj A } |
73 | 132 ( h : Hom A c ( FObj T d) ) |
23 | 133 ( g : Hom A b ( FObj T c) ) |
73 | 134 ( f : Hom A a ( FObj T b) ) |
130 | 135 → A [ join M h (join M g f) ≈ join M ( join M h g) f ] |
73 | 136 Lemma9 {a} {b} {c} {d} h g f = |
24 | 137 begin |
130 | 138 join M h (join M g f) |
30 | 139 ≈⟨⟩ |
130 | 140 join M h ( ( TMap μ c o ( FMap T g o f ) ) ) |
28 | 141 ≈⟨ refl-hom ⟩ |
30 | 142 ( TMap μ d o ( FMap T h o ( TMap μ c o ( FMap T g o f ) ) ) ) |
28 | 143 ≈⟨ cdr ( cdr ( assoc )) ⟩ |
30 | 144 ( TMap μ d o ( FMap T h o ( ( TMap μ c o FMap T g ) o f ) ) ) |
28 | 145 ≈⟨ assoc ⟩ --- ( f o ( g o h ) ) = ( ( f o g ) o h ) |
30 | 146 ( ( TMap μ d o FMap T h ) o ( (TMap μ c o FMap T g ) o f ) ) |
25 | 147 ≈⟨ assoc ⟩ |
30 | 148 ( ( ( TMap μ d o FMap T h ) o (TMap μ c o FMap T g ) ) o f ) |
253 | 149 ≈↑⟨ car assoc ⟩ |
30 | 150 ( ( TMap μ d o ( FMap T h o ( TMap μ c o FMap T g ) ) ) o f ) |
28 | 151 ≈⟨ car ( cdr (assoc) ) ⟩ |
30 | 152 ( ( TMap μ d o ( ( FMap T h o TMap μ c ) o FMap T g ) ) o f ) |
28 | 153 ≈⟨ car assoc ⟩ |
30 | 154 ( ( ( TMap μ d o ( FMap T h o TMap μ c ) ) o FMap T g ) o f ) |
28 | 155 ≈⟨ car (car ( cdr ( begin |
30 | 156 ( FMap T h o TMap μ c ) |
66 | 157 ≈⟨ nat μ ⟩ |
30 | 158 ( TMap μ (FObj T d) o FMap T (FMap T h) ) |
25 | 159 ∎ |
160 ))) ⟩ | |
30 | 161 ( ( ( TMap μ d o ( TMap μ ( FObj T d) o FMap T ( FMap T h ) ) ) o FMap T g ) o f ) |
253 | 162 ≈↑⟨ car assoc ⟩ |
30 | 163 ( ( TMap μ d o ( ( TMap μ ( FObj T d) o FMap T ( FMap T h ) ) o FMap T g ) ) o f ) |
253 | 164 ≈↑⟨ car ( cdr assoc ) ⟩ |
30 | 165 ( ( TMap μ d o ( TMap μ ( FObj T d) o ( FMap T ( FMap T h ) o FMap T g ) ) ) o f ) |
253 | 166 ≈↑⟨ car ( cdr (cdr (distr T ))) ⟩ |
30 | 167 ( ( TMap μ d o ( TMap μ ( FObj T d) o FMap T ( ( FMap T h o g ) ) ) ) o f ) |
28 | 168 ≈⟨ car assoc ⟩ |
30 | 169 ( ( ( TMap μ d o TMap μ ( FObj T d) ) o FMap T ( ( FMap T h o g ) ) ) o f ) |
28 | 170 ≈⟨ car ( car ( |
27 | 171 begin |
30 | 172 ( TMap μ d o TMap μ (FObj T d) ) |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
173 ≈⟨ IsMonad.assoc ( isMonad M) ⟩ |
30 | 174 ( TMap μ d o FMap T (TMap μ d) ) |
27 | 175 ∎ |
176 )) ⟩ | |
30 | 177 ( ( ( TMap μ d o FMap T ( TMap μ d) ) o FMap T ( ( FMap T h o g ) ) ) o f ) |
253 | 178 ≈↑⟨ car assoc ⟩ |
30 | 179 ( ( TMap μ d o ( FMap T ( TMap μ d ) o FMap T ( ( FMap T h o g ) ) ) ) o f ) |
253 | 180 ≈↑⟨ assoc ⟩ |
30 | 181 ( TMap μ d o ( ( FMap T ( TMap μ d ) o FMap T ( ( FMap T h o g ) ) ) o f ) ) |
253 | 182 ≈↑⟨ cdr ( car ( distr T )) ⟩ |
30 | 183 ( TMap μ d o ( FMap T ( ( ( TMap μ d ) o ( FMap T h o g ) ) ) o f ) ) |
23 | 184 ≈⟨ refl-hom ⟩ |
130 | 185 join M ( ( TMap μ d o ( FMap T h o g ) ) ) f |
23 | 186 ≈⟨ refl-hom ⟩ |
130 | 187 join M ( join M h g) f |
24 | 188 ∎ where open ≈-Reasoning (A) |
3 | 189 |
82 | 190 -- |
191 -- o-resp in Kleisli Category ( for Functor definitions ) | |
192 -- | |
300 | 193 Lemma10 : {a b c : Obj A} → (f g : Hom A a (FObj T b) ) → (h i : Hom A b (FObj T c) ) → |
130 | 194 A [ f ≈ g ] → A [ h ≈ i ] → A [ (join M h f) ≈ (join M i g) ] |
474 | 195 Lemma10 {a} {b} {c} f g h i f≈g h≈i = let open ≈-Reasoning (A) in |
74
49e6eb3ef9c0
Kleisli Category constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
196 begin |
130 | 197 join M h f |
74
49e6eb3ef9c0
Kleisli Category constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
198 ≈⟨⟩ |
49e6eb3ef9c0
Kleisli Category constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
199 TMap μ c o ( FMap T h o f ) |
474 | 200 ≈⟨ cdr ( car ( fcong T h≈i )) ⟩ |
201 TMap μ c o ( FMap T i o f ) | |
202 ≈⟨ cdr ( cdr f≈g ) ⟩ | |
74
49e6eb3ef9c0
Kleisli Category constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
203 TMap μ c o ( FMap T i o g ) |
49e6eb3ef9c0
Kleisli Category constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
204 ≈⟨⟩ |
130 | 205 join M i g |
74
49e6eb3ef9c0
Kleisli Category constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
206 ∎ |
49e6eb3ef9c0
Kleisli Category constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
207 |
82 | 208 -- |
209 -- Hom in Kleisli Category | |
210 -- | |
74
49e6eb3ef9c0
Kleisli Category constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
211 |
87 | 212 |
213 record KleisliHom { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } (a : Obj A) (b : Obj A) | |
467 | 214 : Set c₂ where |
215 field | |
216 KMap : Hom A a ( FObj T b ) | |
217 | |
218 open KleisliHom | |
69
84a150c980ce
generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
68
diff
changeset
|
219 |
467 | 220 -- we need this to make agda check stop |
300 | 221 KHom = λ (a b : Obj A) → KleisliHom {c₁} {c₂} {ℓ} {A} {T} a b |
87 | 222 |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
223 K-id : {a : Obj A} → KHom a a |
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
224 K-id {a = a} = record { KMap = TMap η a } |
56 | 225 |
69
84a150c980ce
generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
68
diff
changeset
|
226 open import Relation.Binary.Core |
56 | 227 |
300 | 228 _⋍_ : { a : Obj A } { b : Obj A } (f g : KHom a b ) → Set ℓ |
73 | 229 _⋍_ {a} {b} f g = A [ KMap f ≈ KMap g ] |
71
709c1bde54dc
Kleisli category problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
70
diff
changeset
|
230 |
108 | 231 _*_ : { a b c : Obj A } → ( KHom b c) → ( KHom a b) → KHom a c |
130 | 232 _*_ {a} {b} {c} g f = record { KMap = join M {a} {b} {c} (KMap g) (KMap f) } |
70 | 233 |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
234 isKleisliCategory : IsCategory ( Obj A ) KHom _⋍_ _*_ K-id |
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
235 isKleisliCategory = record { isEquivalence = isEquivalence |
71
709c1bde54dc
Kleisli category problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
70
diff
changeset
|
236 ; identityL = KidL |
709c1bde54dc
Kleisli category problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
70
diff
changeset
|
237 ; identityR = KidR |
709c1bde54dc
Kleisli category problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
70
diff
changeset
|
238 ; o-resp-≈ = Ko-resp |
709c1bde54dc
Kleisli category problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
70
diff
changeset
|
239 ; associative = Kassoc |
69
84a150c980ce
generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
68
diff
changeset
|
240 } |
84a150c980ce
generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
68
diff
changeset
|
241 where |
73 | 242 open ≈-Reasoning (A) |
300 | 243 isEquivalence : { a b : Obj A } → |
72
cbc30519e961
stack overflow solved by moving implicit parameters to module parameters
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
71
diff
changeset
|
244 IsEquivalence {_} {_} {KHom a b} _⋍_ |
82 | 245 isEquivalence {C} {D} = -- this is the same function as A's equivalence but has different types |
246 record { refl = refl-hom | |
247 ; sym = sym | |
248 ; trans = trans-hom | |
249 } | |
300 | 250 KidL : {C D : Obj A} → {f : KHom C D} → (K-id * f) ⋍ f |
73 | 251 KidL {_} {_} {f} = Lemma7 (KMap f) |
300 | 252 KidR : {C D : Obj A} → {f : KHom C D} → (f * K-id) ⋍ f |
73 | 253 KidR {_} {_} {f} = Lemma8 (KMap f) |
300 | 254 Ko-resp : {a b c : Obj A} → {f g : KHom a b } → {h i : KHom b c } → |
71
709c1bde54dc
Kleisli category problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
70
diff
changeset
|
255 f ⋍ g → h ⋍ i → (h * f) ⋍ (i * g) |
74
49e6eb3ef9c0
Kleisli Category constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
256 Ko-resp {a} {b} {c} {f} {g} {h} {i} eq-fg eq-hi = Lemma10 {a} {b} {c} (KMap f) (KMap g) (KMap h) (KMap i) eq-fg eq-hi |
300 | 257 Kassoc : {a b c d : Obj A} → {f : KHom c d } → {g : KHom b c } → {h : KHom a b } → |
71
709c1bde54dc
Kleisli category problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
70
diff
changeset
|
258 (f * (g * h)) ⋍ ((f * g) * h) |
73 | 259 Kassoc {_} {_} {_} {_} {f} {g} {h} = Lemma9 (KMap f) (KMap g) (KMap h) |
3 | 260 |
78 | 261 KleisliCategory : Category c₁ c₂ ℓ |
75 | 262 KleisliCategory = |
263 record { Obj = Obj A | |
264 ; Hom = KHom | |
265 ; _o_ = _*_ | |
266 ; _≈_ = _⋍_ | |
267 ; Id = K-id | |
268 ; isCategory = isKleisliCategory | |
269 } | |
56 | 270 |
82 | 271 -- |
272 -- Resolution | |
273 -- T = U_T U_F | |
274 -- nat-ε | |
275 -- nat-η | |
276 -- | |
277 | |
300 | 278 ufmap : {a b : Obj A} (f : KHom a b ) → Hom A (FObj T a) (FObj T b) |
80 | 279 ufmap {a} {b} f = A [ TMap μ (b) o FMap T (KMap f) ] |
280 | |
75 | 281 U_T : Functor KleisliCategory A |
282 U_T = record { | |
283 FObj = FObj T | |
284 ; FMap = ufmap | |
285 ; isFunctor = record | |
286 { ≈-cong = ≈-cong | |
287 ; identity = identity | |
76 | 288 ; distr = distr1 |
75 | 289 } |
290 } where | |
291 identity : {a : Obj A} → A [ ufmap (K-id {a}) ≈ id1 A (FObj T a) ] | |
292 identity {a} = let open ≈-Reasoning (A) in | |
293 begin | |
294 TMap μ (a) o FMap T (TMap η a) | |
295 ≈⟨ IsMonad.unity2 (isMonad M) ⟩ | |
253 | 296 id (FObj T a) |
75 | 297 ∎ |
298 ≈-cong : {a b : Obj A} {f g : KHom a b} → A [ KMap f ≈ KMap g ] → A [ ufmap f ≈ ufmap g ] | |
299 ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (A) in | |
300 begin | |
301 TMap μ (b) o FMap T (KMap f) | |
302 ≈⟨ cdr (fcong T f≈g) ⟩ | |
303 TMap μ (b) o FMap T (KMap g) | |
304 ∎ | |
76 | 305 distr1 : {a b c : Obj A} {f : KHom a b} {g : KHom b c} → A [ ufmap (g * f) ≈ (A [ ufmap g o ufmap f ] )] |
306 distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in | |
75 | 307 begin |
308 ufmap (g * f) | |
76 | 309 ≈⟨⟩ |
310 ufmap {a} {c} ( record { KMap = TMap μ (c) o (FMap T (KMap g) o (KMap f)) } ) | |
311 ≈⟨⟩ | |
312 TMap μ (c) o FMap T ( TMap μ (c) o (FMap T (KMap g) o (KMap f))) | |
313 ≈⟨ cdr ( distr T) ⟩ | |
314 TMap μ (c) o (( FMap T ( TMap μ (c)) o FMap T (FMap T (KMap g) o (KMap f)))) | |
315 ≈⟨ assoc ⟩ | |
316 (TMap μ (c) o ( FMap T ( TMap μ (c)))) o FMap T (FMap T (KMap g) o (KMap f)) | |
317 ≈⟨ car (sym (IsMonad.assoc (isMonad M))) ⟩ | |
318 (TMap μ (c) o ( TMap μ (FObj T c))) o FMap T (FMap T (KMap g) o (KMap f)) | |
319 ≈⟨ sym assoc ⟩ | |
320 TMap μ (c) o (( TMap μ (FObj T c)) o FMap T (FMap T (KMap g) o (KMap f))) | |
321 ≈⟨ cdr (cdr (distr T)) ⟩ | |
322 TMap μ (c) o (( TMap μ (FObj T c)) o (FMap T (FMap T (KMap g)) o FMap T (KMap f))) | |
323 ≈⟨ cdr (assoc) ⟩ | |
324 TMap μ (c) o ((( TMap μ (FObj T c)) o (FMap T (FMap T (KMap g)))) o FMap T (KMap f)) | |
325 ≈⟨ sym (cdr (car (nat μ ))) ⟩ | |
326 TMap μ (c) o ((FMap T (KMap g ) o TMap μ (b)) o FMap T (KMap f )) | |
327 ≈⟨ cdr (sym assoc) ⟩ | |
328 TMap μ (c) o (FMap T (KMap g ) o ( TMap μ (b) o FMap T (KMap f ))) | |
329 ≈⟨ assoc ⟩ | |
330 ( TMap μ (c) o FMap T (KMap g ) ) o ( TMap μ (b) o FMap T (KMap f ) ) | |
331 ≈⟨⟩ | |
75 | 332 ufmap g o ufmap f |
333 ∎ | |
334 | |
335 | |
300 | 336 ffmap : {a b : Obj A} (f : Hom A a b) → KHom a b |
474 | 337 ffmap {a} {b} f = record { KMap = A [ TMap η b o f ] } |
75 | 338 |
339 F_T : Functor A KleisliCategory | |
340 F_T = record { | |
300 | 341 FObj = λ a → a |
75 | 342 ; FMap = ffmap |
343 ; isFunctor = record | |
344 { ≈-cong = ≈-cong | |
345 ; identity = identity | |
76 | 346 ; distr = distr1 |
75 | 347 } |
348 } where | |
349 identity : {a : Obj A} → A [ A [ TMap η a o id1 A a ] ≈ TMap η a ] | |
350 identity {a} = IsCategory.identityR ( Category.isCategory A) | |
82 | 351 -- Category.cod A f and Category.cod A g are actualy the same b, so we don't need cong-≈, just refl |
474 | 352 lemma1 : {b : Obj A} → A [ TMap η b ≈ TMap η b ] |
353 lemma1 = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A )) | |
354 ≈-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → A [ A [ TMap η b o f ] ≈ A [ TMap η b o g ] ] | |
355 ≈-cong f≈g = (IsCategory.o-resp-≈ (Category.isCategory A)) f≈g lemma1 | |
76 | 356 distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → |
75 | 357 ( ffmap (A [ g o f ]) ⋍ ( ffmap g * ffmap f ) ) |
77 | 358 distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in |
75 | 359 begin |
360 KMap (ffmap (A [ g o f ])) | |
77 | 361 ≈⟨⟩ |
362 TMap η (c) o (g o f) | |
363 ≈⟨ assoc ⟩ | |
364 (TMap η (c) o g) o f | |
365 ≈⟨ car (sym (nat η)) ⟩ | |
366 (FMap T g o TMap η (b)) o f | |
367 ≈⟨ sym idL ⟩ | |
253 | 368 id (FObj T c) o ((FMap T g o TMap η (b)) o f) |
77 | 369 ≈⟨ sym (car (IsMonad.unity2 (isMonad M))) ⟩ |
370 (TMap μ c o FMap T (TMap η c)) o ((FMap T g o TMap η (b)) o f) | |
371 ≈⟨ sym assoc ⟩ | |
372 TMap μ c o ( FMap T (TMap η c) o ((FMap T g o TMap η (b)) o f) ) | |
373 ≈⟨ cdr (cdr (sym assoc)) ⟩ | |
374 TMap μ c o ( FMap T (TMap η c) o (FMap T g o (TMap η (b) o f))) | |
375 ≈⟨ cdr assoc ⟩ | |
376 TMap μ c o ( ( FMap T (TMap η c) o FMap T g ) o (TMap η (b) o f) ) | |
377 ≈⟨ sym (cdr ( car ( distr T ))) ⟩ | |
378 TMap μ c o ( ( FMap T (TMap η c o g)) o (TMap η (b) o f)) | |
379 ≈⟨ assoc ⟩ | |
380 (TMap μ c o ( FMap T (TMap η c o g))) o (TMap η (b) o f) | |
381 ≈⟨ assoc ⟩ | |
382 ((TMap μ c o (FMap T (TMap η c o g))) o TMap η b) o f | |
383 ≈⟨ sym assoc ⟩ | |
384 (TMap μ c o (FMap T (TMap η c o g))) o (TMap η b o f) | |
385 ≈⟨ sym assoc ⟩ | |
386 TMap μ c o ( (FMap T (TMap η c o g)) o (TMap η b o f) ) | |
387 ≈⟨⟩ | |
130 | 388 join M (TMap η c o g) (TMap η b o f) |
77 | 389 ≈⟨⟩ |
75 | 390 KMap ( ffmap g * ffmap f ) |
391 ∎ | |
392 | |
82 | 393 -- |
394 -- T = (U_T ○ F_T) | |
395 -- | |
396 | |
300 | 397 Lemma11-1 : ∀{a b : Obj A} → (f : Hom A a b ) → A [ FMap T f ≈ FMap (U_T ○ F_T) f ] |
79 | 398 Lemma11-1 {a} {b} f = let open ≈-Reasoning (A) in |
399 sym ( begin | |
400 FMap (U_T ○ F_T) f | |
401 ≈⟨⟩ | |
402 FMap U_T ( FMap F_T f ) | |
403 ≈⟨⟩ | |
404 TMap μ (b) o FMap T (KMap ( ffmap f ) ) | |
405 ≈⟨⟩ | |
406 TMap μ (b) o FMap T (TMap η (b) o f) | |
407 ≈⟨ cdr (distr T ) ⟩ | |
408 TMap μ (b) o ( FMap T (TMap η (b)) o FMap T f) | |
409 ≈⟨ assoc ⟩ | |
410 (TMap μ (b) o FMap T (TMap η (b))) o FMap T f | |
411 ≈⟨ car (IsMonad.unity2 (isMonad M)) ⟩ | |
253 | 412 id (FObj T b) o FMap T f |
79 | 413 ≈⟨ idL ⟩ |
414 FMap T f | |
415 ∎ ) | |
416 | |
82 | 417 -- construct ≃ |
418 | |
81
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
419 Lemma11 : T ≃ (U_T ○ F_T) |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
420 Lemma11 f = Category.Cat.refl (Lemma11-1 f) |
78 | 421 |
82 | 422 -- |
423 -- natural transformations | |
424 -- | |
425 | |
78 | 426 nat-η : NTrans A A identityFunctor ( U_T ○ F_T ) |
467 | 427 nat-η = record { TMap = λ x → TMap η x ; isNTrans = record { commute = commute } } where |
428 commute : {a b : Obj A} {f : Hom A a b} | |
79 | 429 → A [ A [ ( FMap ( U_T ○ F_T ) f ) o ( TMap η a ) ] ≈ A [ (TMap η b ) o f ] ] |
467 | 430 commute {a} {b} {f} = let open ≈-Reasoning (A) in |
79 | 431 begin |
432 ( FMap ( U_T ○ F_T ) f ) o ( TMap η a ) | |
84 | 433 ≈⟨ sym (resp refl-hom (Lemma11-1 f)) ⟩ |
434 FMap T f o TMap η a | |
79 | 435 ≈⟨ nat η ⟩ |
84 | 436 TMap η b o f |
79 | 437 ∎ |
77 | 438 |
300 | 439 tmap-ε : (a : Obj A) → KHom (FObj T a) a |
78 | 440 tmap-ε a = record { KMap = id1 A (FObj T a) } |
441 | |
442 nat-ε : NTrans KleisliCategory KleisliCategory ( F_T ○ U_T ) identityFunctor | |
300 | 443 nat-ε = record { TMap = λ a → tmap-ε a; isNTrans = isNTrans1 } where |
130 | 444 commute1 : {a b : Obj A} {f : KHom a b} |
78 | 445 → (f * ( tmap-ε a ) ) ⋍ (( tmap-ε b ) * ( FMap (F_T ○ U_T) f ) ) |
130 | 446 commute1 {a} {b} {f} = let open ≈-Reasoning (A) in |
79 | 447 sym ( begin |
448 KMap (( tmap-ε b ) * ( FMap (F_T ○ U_T) f )) | |
80 | 449 ≈⟨⟩ |
253 | 450 TMap μ b o ( FMap T ( id (FObj T b) ) o ( KMap (FMap (F_T ○ U_T) f ) )) |
80 | 451 ≈⟨ cdr ( cdr ( |
452 begin | |
453 KMap (FMap (F_T ○ U_T) f ) | |
454 ≈⟨⟩ | |
455 KMap (FMap F_T (FMap U_T f)) | |
456 ≈⟨⟩ | |
457 TMap η (FObj T b) o (TMap μ (b) o FMap T (KMap f)) | |
458 ∎ | |
459 )) ⟩ | |
253 | 460 TMap μ b o ( FMap T ( id (FObj T b) ) o (TMap η (FObj T b) o (TMap μ (b) o FMap T (KMap f)))) |
80 | 461 ≈⟨ cdr (car (IsFunctor.identity (isFunctor T))) ⟩ |
253 | 462 TMap μ b o ( id (FObj T (FObj T b) ) o (TMap η (FObj T b) o (TMap μ (b) o FMap T (KMap f)))) |
80 | 463 ≈⟨ cdr idL ⟩ |
464 TMap μ b o (TMap η (FObj T b) o (TMap μ (b) o FMap T (KMap f))) | |
465 ≈⟨ assoc ⟩ | |
466 (TMap μ b o (TMap η (FObj T b))) o (TMap μ (b) o FMap T (KMap f)) | |
467 ≈⟨ (car (IsMonad.unity1 (isMonad M))) ⟩ | |
253 | 468 id (FObj T b) o (TMap μ (b) o FMap T (KMap f)) |
80 | 469 ≈⟨ idL ⟩ |
470 TMap μ b o FMap T (KMap f) | |
471 ≈⟨ cdr (sym idR) ⟩ | |
253 | 472 TMap μ b o ( FMap T (KMap f) o id (FObj T a) ) |
80 | 473 ≈⟨⟩ |
79 | 474 KMap (f * ( tmap-ε a )) |
475 ∎ ) | |
300 | 476 isNTrans1 : IsNTrans KleisliCategory KleisliCategory ( F_T ○ U_T ) identityFunctor (λ a → tmap-ε a ) |
130 | 477 isNTrans1 = record { commute = commute1 } |
77 | 478 |
82 | 479 -- |
480 -- μ = U_T ε U_F | |
481 -- | |
300 | 482 tmap-μ : (a : Obj A) → Hom A (FObj ( U_T ○ F_T ) (FObj ( U_T ○ F_T ) a)) (FObj ( U_T ○ F_T ) a) |
95 | 483 tmap-μ a = FMap U_T ( TMap nat-ε ( FObj F_T a )) |
484 | |
485 nat-μ : NTrans A A (( U_T ○ F_T ) ○ ( U_T ○ F_T )) ( U_T ○ F_T ) | |
486 nat-μ = record { TMap = tmap-μ ; isNTrans = isNTrans1 } where | |
130 | 487 commute1 : {a b : Obj A} {f : Hom A a b} |
95 | 488 → A [ A [ (FMap (U_T ○ F_T) f) o ( tmap-μ a) ] ≈ A [ ( tmap-μ b ) o FMap (U_T ○ F_T) ( FMap (U_T ○ F_T) f) ] ] |
130 | 489 commute1 {a} {b} {f} = let open ≈-Reasoning (A) in |
95 | 490 sym ( begin |
491 ( tmap-μ b ) o FMap (U_T ○ F_T) ( FMap (U_T ○ F_T) f) | |
492 ≈⟨⟩ | |
493 ( FMap U_T ( TMap nat-ε ( FObj F_T b )) ) o FMap (U_T ○ F_T) ( FMap (U_T ○ F_T) f) | |
494 ≈⟨ sym ( distr U_T) ⟩ | |
495 FMap U_T ( KleisliCategory [ TMap nat-ε ( FObj F_T b ) o FMap F_T ( FMap (U_T ○ F_T) f) ] ) | |
496 ≈⟨ fcong U_T (sym (nat nat-ε)) ⟩ | |
497 FMap U_T ( KleisliCategory [ (FMap F_T f) o TMap nat-ε ( FObj F_T a ) ] ) | |
498 ≈⟨ distr U_T ⟩ | |
499 (FMap U_T (FMap F_T f)) o FMap U_T ( TMap nat-ε ( FObj F_T a )) | |
500 ≈⟨⟩ | |
501 (FMap (U_T ○ F_T) f) o ( tmap-μ a) | |
502 ∎ ) | |
503 isNTrans1 : IsNTrans A A (( U_T ○ F_T ) ○ ( U_T ○ F_T )) ( U_T ○ F_T ) tmap-μ | |
130 | 504 isNTrans1 = record { commute = commute1 } |
95 | 505 |
300 | 506 Lemma12 : {x : Obj A } → A [ TMap nat-μ x ≈ FMap U_T ( TMap nat-ε ( FObj F_T x ) ) ] |
80 | 507 Lemma12 {x} = let open ≈-Reasoning (A) in |
508 sym ( begin | |
509 FMap U_T ( TMap nat-ε ( FObj F_T x ) ) | |
510 ≈⟨⟩ | |
95 | 511 tmap-μ x |
512 ≈⟨⟩ | |
513 TMap nat-μ x | |
514 ∎ ) | |
515 | |
300 | 516 Lemma13 : {x : Obj A } → A [ TMap μ x ≈ FMap U_T ( TMap nat-ε ( FObj F_T x ) ) ] |
95 | 517 Lemma13 {x} = let open ≈-Reasoning (A) in |
518 sym ( begin | |
519 FMap U_T ( TMap nat-ε ( FObj F_T x ) ) | |
520 ≈⟨⟩ | |
253 | 521 TMap μ x o FMap T (id (FObj T x) ) |
80 | 522 ≈⟨ cdr (IsFunctor.identity (isFunctor T)) ⟩ |
253 | 523 TMap μ x o id (FObj T (FObj T x) ) |
80 | 524 ≈⟨ idR ⟩ |
525 TMap μ x | |
526 ∎ ) | |
78 | 527 |
84 | 528 Adj_T : Adjunction A KleisliCategory U_T F_T nat-η nat-ε |
529 Adj_T = record { | |
80 | 530 isAdjunction = record { |
531 adjoint1 = adjoint1 ; | |
532 adjoint2 = adjoint2 | |
533 } | |
534 } where | |
535 adjoint1 : { b : Obj KleisliCategory } → | |
536 A [ A [ ( FMap U_T ( TMap nat-ε b)) o ( TMap nat-η ( FObj U_T b )) ] ≈ id1 A (FObj U_T b) ] | |
81
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
537 adjoint1 {b} = let open ≈-Reasoning (A) in |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
538 begin |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
539 ( FMap U_T ( TMap nat-ε b)) o ( TMap nat-η ( FObj U_T b )) |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
540 ≈⟨⟩ |
253 | 541 (TMap μ (b) o FMap T (id (FObj T b ))) o ( TMap η ( FObj T b )) |
81
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
542 ≈⟨ car ( cdr (IsFunctor.identity (isFunctor T))) ⟩ |
253 | 543 (TMap μ (b) o (id (FObj T (FObj T b )))) o ( TMap η ( FObj T b )) |
81
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
544 ≈⟨ car idR ⟩ |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
545 TMap μ (b) o ( TMap η ( FObj T b )) |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
546 ≈⟨ IsMonad.unity1 (isMonad M) ⟩ |
253 | 547 id (FObj U_T b) |
81
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
548 ∎ |
80 | 549 adjoint2 : {a : Obj A} → |
550 KleisliCategory [ KleisliCategory [ ( TMap nat-ε ( FObj F_T a )) o ( FMap F_T ( TMap nat-η a )) ] | |
87 | 551 ≈ id1 KleisliCategory (FObj F_T a) ] |
81
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
552 adjoint2 {a} = let open ≈-Reasoning (A) in |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
553 begin |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
554 KMap (( TMap nat-ε ( FObj F_T a )) * ( FMap F_T ( TMap nat-η a )) ) |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
555 ≈⟨⟩ |
253 | 556 TMap μ a o (FMap T (id (FObj T a) ) o ((TMap η (FObj T a)) o (TMap η a))) |
81
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
557 ≈⟨ cdr ( car ( IsFunctor.identity (isFunctor T))) ⟩ |
253 | 558 TMap μ a o ((id (FObj T (FObj T a) )) o ((TMap η (FObj T a)) o (TMap η a))) |
81
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
559 ≈⟨ cdr ( idL ) ⟩ |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
560 TMap μ a o ((TMap η (FObj T a)) o (TMap η a)) |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
561 ≈⟨ assoc ⟩ |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
562 (TMap μ a o (TMap η (FObj T a))) o (TMap η a) |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
563 ≈⟨ car (IsMonad.unity1 (isMonad M)) ⟩ |
253 | 564 id (FObj T a) o (TMap η a) |
81
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
565 ≈⟨ idL ⟩ |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
566 TMap η a |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
567 ≈⟨⟩ |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
568 TMap η (FObj F_T a) |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
569 ≈⟨⟩ |
0404b2ba7db6
Resolution Adjoint proved.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
80
diff
changeset
|
570 KMap (id1 KleisliCategory (FObj F_T a)) |
82 | 571 ∎ |
77 | 572 |
87 | 573 open MResolution |
84 | 574 |
95 | 575 Resolution_T : MResolution A KleisliCategory T U_T F_T {nat-η} {nat-ε} {nat-μ} Adj_T |
84 | 576 Resolution_T = record { |
87 | 577 T=UF = Lemma11; |
578 μ=UεF = Lemma12 | |
84 | 579 } |
580 | |
97
2feec58bb02d
seprate comparison functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
581 -- end |