annotate nat.agda @ 7:79d9c30e995a

Reasoning
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 07 Jul 2013 13:14:54 +0900
parents b1fd8d8689a9
children d5e4db7bbe01
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 module nat where
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 -- Monad
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 -- Category A
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 -- A = Category
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 -- Functor T : A -> A
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 --T(a) = t(a)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 --T(f) = tf(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
10 open import Category -- https://github.com/konn/category-agda
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Level
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open Functor
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
14 --T(g f) = T(g) T(f)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
15
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 Lemma1 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} (T : Functor A A) -> {a b c : Obj A} {g : Hom A b c} { f : Hom A a b }
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 -> A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ]
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 Lemma1 = \t -> IsFunctor.distr ( isFunctor t )
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 -- F(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 -- F(a) ----> F(b)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 -- | |
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 -- |t(a) |t(b) G(f)t(a) = t(b)F(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 -- | |
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 -- v v
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26 -- G(a) ----> G(b)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27 -- G(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
29 record IsNTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (D : Category c₁ c₂ ℓ) (C : Category c₁′ c₂′ ℓ′)
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30 ( F G : Functor D C )
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
31 (Trans : (A : Obj D) → Hom C (FObj F A) (FObj G A))
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33 field
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 naturality : {a b : Obj D} {f : Hom D a b}
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
35 → C [ C [ ( FMap G f ) o ( Trans a ) ] ≈ C [ (Trans b ) o (FMap F f) ] ]
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36 -- uniqness : {d : Obj D}
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
37 -- → C [ Trans d ≈ Trans d ]
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
40 record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain )
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
41 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
42 field
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
43 Trans : (A : Obj domain) → Hom codomain (FObj F A) (FObj G A)
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
44 isNTrans : IsNTrans domain codomain F G Trans
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
46 open NTrans
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
47 Lemma2 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} {F G : Functor A A}
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
48 -> (μ : NTrans A A F G) -> {a b : Obj A} { f : Hom A a b }
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
49 -> A [ A [ FMap G f o Trans μ a ] ≈ A [ Trans μ b o FMap F f ] ]
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
50 Lemma2 = \n -> IsNTrans.naturality ( isNTrans n )
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
51
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
52 open import Category.Cat
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
53
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
54 -- η : 1_A -> T
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
55 -- μ : TT -> T
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
56 -- μ(a)η(T(a)) = a
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
57 -- μ(a)T(η(a)) = a
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58 -- μ(a)(μ(T(a))) = μ(a)T(μ(a))
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
59
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
60 record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
61 ( T : Functor A A )
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
62 ( η : NTrans A A identityFunctor T )
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
63 ( μ : NTrans A A (T ○ T) T)
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
64 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
65 field
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
66 assoc : {a : Obj A} -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ]
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
67 unity1 : {a : Obj A} -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ]
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
68 unity2 : {a : Obj A} -> A [ A [ Trans μ a o (FMap T (Trans η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ]
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
69
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
70 record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T)
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
71 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
72 eta : NTrans A A identityFunctor T
6
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
73 eta = η
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
74 mu : NTrans A A (T ○ T) T
6
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
75 mu = μ
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
76 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
77 isMonad : IsMonad A T η μ
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
78
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
79 open Monad
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
80 Lemma3 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
81 { T : Functor A A }
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
82 { η : NTrans A A identityFunctor T }
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
83 { μ : NTrans A A (T ○ T) T }
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
84 { a : Obj A } ->
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
85 ( M : Monad A T η μ )
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
86 -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ]
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
87 Lemma3 = \m -> IsMonad.assoc ( isMonad m )
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
88
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
89
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
90 Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b}
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
91 -> A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ]
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
92 Lemma4 = \a -> IsCategory.identityL ( Category.isCategory a )
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
93
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
94 Lemma5 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
95 { T : Functor A A }
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
96 { η : NTrans A A identityFunctor T }
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
97 { μ : NTrans A A (T ○ T) T }
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
98 { a : Obj A } ->
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
99 ( M : Monad A T η μ )
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
100 -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ]
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
101 Lemma5 = \m -> IsMonad.unity1 ( isMonad m )
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
102
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
103 Lemma6 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
104 { T : Functor A A }
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
105 { η : NTrans A A identityFunctor T }
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
106 { μ : NTrans A A (T ○ T) T }
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
107 { a : Obj A } ->
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
108 ( M : Monad A T η μ )
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
109 -> A [ A [ Trans μ a o (FMap T (Trans η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ]
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
110 Lemma6 = \m -> IsMonad.unity2 ( isMonad m )
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
111
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
112 -- T = M x A
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
113 -- nat of η
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
114 -- g ○ f = μ(c) T(g) f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
115 -- h ○ (g ○ f) = (h ○ g) ○ f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
116 -- η(b) ○ f = f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
117 -- f ○ η(a) = f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
118
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
119 record Kleisli { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
120 ( T : Functor A A )
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
121 ( η : NTrans A A identityFunctor T )
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
122 ( μ : NTrans A A (T ○ T) T )
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
123 ( M : Monad A T η μ ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
124 monad : Monad A T η μ
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
125 monad = M
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
126 join : { a b : Obj A } -> ( c : Obj A ) ->
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
127 ( Hom A b ( FObj T c )) -> ( Hom A a ( FObj T b)) -> Hom A a ( FObj T c )
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
128 join c g f = A [ Trans μ c o A [ FMap T g o f ] ]
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
129
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
130 open import Relation.Binary renaming (Trans to Trans1 )
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
131 open import Relation.Binary.Core renaming (Trans to Trans1 )
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
132
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
133 module ≈-Reasoning where
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
134
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
135 -- The code in Relation.Binary.EqReasoning cannot handle
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
136 -- heterogeneous equalities, hence the code duplication here.
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
137
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
138 trans : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A }
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
139 { x y z : Hom A a b } →
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
140 A [ x ≈ y ] → A [ y ≈ z ] → A [ x ≈ z ]
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
141 trans a b = {!!}
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
142
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
143 infix 2 _∎
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
144 infixr 2 _≈⟨_!_⟩_
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
145 infix 1 begin_
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
146
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
147 data IsRelatedTo {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } ( x y : Hom A a b ) :
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
148 Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
149 relTo : (x≈y : A [ x ≈ y ] ) → IsRelatedTo A x y
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
150
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
151 begin_ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } { x y : Hom A a b} →
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
152 IsRelatedTo A x y → A [ x ≈ y ]
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
153 begin relTo x≈y = x≈y
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
154
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
155 _≈⟨_!_⟩_ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A }
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
156 { x y z : Hom A a b } →
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
157 A [ x ≈ y ] → IsRelatedTo A y z → IsRelatedTo A x z
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
158 _≈⟨_!_⟩_ = {!!}
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
159 -- _ ≈⟨_ x≈y ⟩ relTo y≈z = relTo (trans x≈y y≈z)
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
160
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
161 _∎ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } (x : Hom A a b) → IsRelatedTo A x x
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
162 _∎ _ = relTo {!!}
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
163
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
164 open Kleisli
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
165 Lemma7 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ->
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
166 { T : Functor A A }
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
167 { η : NTrans A A identityFunctor T }
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
168 { μ : NTrans A A (T ○ T) T }
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
169 { a b : Obj A }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
170 { f : Hom A a ( FObj T b) }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
171 { M : Monad A T η μ }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
172 ( K : Kleisli A T η μ M)
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
173 -> A [ join K b (Trans η b) f ≈ f ]
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
174 Lemma7 c k = {!!}
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
175
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
176
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
177
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
178
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
179 Lemma8 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
180 { T : Functor A A }
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
181 { η : NTrans A A identityFunctor T }
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
182 { μ : NTrans A A (T ○ T) T }
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
183 { a b : Obj A }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
184 { f : Hom A a ( FObj T b) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
185 { M : Monad A T η μ }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
186 ( K : Kleisli A T η μ M)
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
187 -> A [ join K b f (Trans η a) ≈ f ]
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
188 Lemma8 k = {!!}
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
189
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
190 Lemma9 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
191 { T : Functor A A }
7
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
192 { η : NTrans A A identityFunctor T }
79d9c30e995a Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 6
diff changeset
193 { μ : NTrans A A (T ○ T) T }
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
194 { a b c d : Obj A }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
195 { f : Hom A a ( FObj T b) }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
196 { g : Hom A b ( FObj T c) }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
197 { h : Hom A c ( FObj T d) }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
198 { M : Monad A T η μ }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
199 ( K : Kleisli A T η μ M)
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
200 -> A [ join K d h (join K c g f) ≈ join K d ( join K d h g) f ]
6
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
201 Lemma9 k = {!!}
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
202
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
203
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
204
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
205
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
206
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
207 -- Kleisli :
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
208 -- Kleisli = record { Hom =
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
209 -- ; Hom = _⟶_
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
210 -- ; Id = IdProd
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
211 -- ; _o_ = _∘_
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
212 -- ; _≈_ = _≈_
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
213 -- ; isCategory = record { isEquivalence = record { refl = λ {φ} → ≈-refl {φ = φ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
214 -- ; sym = λ {φ ψ} → ≈-symm {φ = φ} {ψ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
215 -- ; trans = λ {φ ψ σ} → ≈-trans {φ = φ} {ψ} {σ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
216 -- }
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
217 -- ; identityL = identityL
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
218 -- ; identityR = identityR
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
219 -- ; o-resp-≈ = o-resp-≈
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
220 -- ; associative = associative
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
221 -- }
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
222 -- }