annotate SetsCompleteness.agda @ 593:a158ebb391f2

fix
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 21 May 2017 19:53:58 +0900
parents 0448a74c0a03
children db76b73b526c
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
500
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 open import Category -- https://github.com/konn/category-agda
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 open import Level
535
5d7f8921bac0 on going ....
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 534
diff changeset
4 open import Category.Sets renaming ( _o_ to _*_ )
500
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 module SetsCompleteness where
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import cat-utility
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Relation.Binary.Core
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Function
510
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
12 import Relation.Binary.PropositionalEquality
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
13 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
14 postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
15
520
5b4a794f3784 k-cong done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 519
diff changeset
16 ≡cong = Relation.Binary.PropositionalEquality.cong
510
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
17
573
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 572
diff changeset
18 ≈-to-≡ : { c₂ : Level } {a b : Obj (Sets { c₂})} {f g : Hom Sets a b} →
524
d6739779b4ac on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 523
diff changeset
19 Sets [ f ≈ g ] → (x : a ) → f x ≡ g x
573
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 572
diff changeset
20 ≈-to-≡ refl x = refl
503
bd33096c189b on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 501
diff changeset
21
504
b489f27317fb on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 503
diff changeset
22 record Σ {a} (A : Set a) (B : Set a) : Set a where
503
bd33096c189b on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 501
diff changeset
23 constructor _,_
bd33096c189b on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 501
diff changeset
24 field
bd33096c189b on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 501
diff changeset
25 proj₁ : A
504
b489f27317fb on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 503
diff changeset
26 proj₂ : B
503
bd33096c189b on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 501
diff changeset
27
bd33096c189b on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 501
diff changeset
28 open Σ public
500
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31 SetsProduct : { c₂ : Level} → CreateProduct ( Sets { c₂} )
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 SetsProduct { c₂ } = record {
504
b489f27317fb on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 503
diff changeset
33 product = λ a b → Σ a b
500
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 ; π1 = λ a b → λ ab → (proj₁ ab)
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
35 ; π2 = λ a b → λ ab → (proj₂ ab)
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36 ; isProduct = λ a b → record {
503
bd33096c189b on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 501
diff changeset
37 _×_ = λ f g x → record { proj₁ = f x ; proj₂ = g x } -- ( f x , g x )
500
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38 ; π1fxg=f = refl
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39 ; π2fxg=g = refl
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40 ; uniqueness = refl
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
41 ; ×-cong = λ {c} {f} {f'} {g} {g'} f=f g=g → prod-cong a b f=f g=g
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
42 }
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
43 } where
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
44 prod-cong : ( a b : Obj (Sets {c₂}) ) {c : Obj (Sets {c₂}) } {f f' : Hom Sets c a } {g g' : Hom Sets c b }
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45 → Sets [ f ≈ f' ] → Sets [ g ≈ g' ]
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
46 → Sets [ (λ x → f x , g x) ≈ (λ x → f' x , g' x) ]
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
47 prod-cong a b {c} {f} {.f} {g} {.g} refl refl = refl
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
48
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
49
578
6b9737d041b4 one yelllow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 575
diff changeset
50 record sproduct {a} (I : Set a) ( Product : I → Set a ) : Set a where
508
3ce21b2a671a IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 507
diff changeset
51 field
573
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 572
diff changeset
52 proj : ( i : I ) → Product i
508
3ce21b2a671a IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 507
diff changeset
53
578
6b9737d041b4 one yelllow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 575
diff changeset
54 open sproduct
508
3ce21b2a671a IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 507
diff changeset
55
578
6b9737d041b4 one yelllow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 575
diff changeset
56 iproduct1 : { c₂ : Level} → (I : Obj (Sets { c₂}) ) (fi : I → Obj Sets ) {q : Obj Sets} → ((i : I) → Hom Sets q (fi i)) → Hom Sets q (sproduct I fi)
574
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
57 iproduct1 I fi {q} qi x = record { proj = λ i → (qi i) x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
58 ipcx : { c₂ : Level} → (I : Obj (Sets { c₂})) (fi : I → Obj Sets ) {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → (x : q) → iproduct1 I fi qi x ≡ iproduct1 I fi qi' x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
59 ipcx I fi {q} {qi} {qi'} qi=qi x =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
60 begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
61 record { proj = λ i → (qi i) x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
62 ≡⟨ ≡cong ( λ qi → record { proj = qi } ) ( extensionality Sets (λ i → ≈-to-≡ (qi=qi i) x )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
63 record { proj = λ i → (qi' i) x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
64 ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
65 open import Relation.Binary.PropositionalEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
66 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
67 ip-cong : { c₂ : Level} → (I : Obj (Sets { c₂}) ) (fi : I → Obj Sets ) {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → Sets [ iproduct1 I fi qi ≈ iproduct1 I fi qi' ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
68 ip-cong I fi {q} {qi} {qi'} qi=qi = extensionality Sets ( ipcx I fi qi=qi )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
69
570
3d6d8fea3e09 yelloow remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 569
diff changeset
70 SetsIProduct : { c₂ : Level} → (I : Obj Sets) (fi : I → Obj Sets )
508
3ce21b2a671a IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 507
diff changeset
71 → IProduct ( Sets { c₂} ) I
3ce21b2a671a IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 507
diff changeset
72 SetsIProduct I fi = record {
3ce21b2a671a IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 507
diff changeset
73 ai = fi
578
6b9737d041b4 one yelllow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 575
diff changeset
74 ; iprod = sproduct I fi
573
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 572
diff changeset
75 ; pi = λ i prod → proj prod i
509
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
76 ; isIProduct = record {
574
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
77 iproduct = iproduct1 I fi
509
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
78 ; pif=q = pif=q
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
79 ; ip-uniqueness = ip-uniqueness
574
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
80 ; ip-cong = ip-cong I fi
509
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
81 }
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
82 } where
574
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 573
diff changeset
83 pif=q : {q : Obj Sets} (qi : (i : I) → Hom Sets q (fi i)) {i : I} → Sets [ Sets [ (λ prod → proj prod i) o iproduct1 I fi qi ] ≈ qi i ]
509
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
84 pif=q {q} qi {i} = refl
578
6b9737d041b4 one yelllow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 575
diff changeset
85 ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (sproduct I fi)} → Sets [ iproduct1 I fi (λ i → Sets [ (λ prod → proj prod i) o h ]) ≈ h ]
509
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
86 ip-uniqueness = refl
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
87
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
88
510
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
89 --
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
90 -- e f
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
91 -- c -------→ a ---------→ b f ( f'
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
92 -- ^ . ---------→
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
93 -- | . g
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
94 -- |k .
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
95 -- | . h
514
1fca61019bdf on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 513
diff changeset
96 --y : d
509
3e82fb1ce170 IProduct in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 508
diff changeset
97
522
8fd030f9f572 Equalizer in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 521
diff changeset
98 -- cf. https://github.com/danr/Agda-projects/blob/master/Category-Theory/Equalizer.agda
508
3ce21b2a671a IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 507
diff changeset
99
510
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
100 data sequ {c : Level} (A B : Set c) ( f g : A → B ) : Set c where
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
101 elem : (x : A ) → (eq : f x ≡ g x) → sequ A B f g
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
102
532
d5d7163f2a1d equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 531
diff changeset
103 equ : { c₂ : Level} {a b : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } → ( sequ a b f g ) → a
d5d7163f2a1d equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 531
diff changeset
104 equ (elem x eq) = x
d5d7163f2a1d equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 531
diff changeset
105
533
c3dcea3a92a7 use sequ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 532
diff changeset
106 fe=ge0 : { c₂ : Level} {a b : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } →
c3dcea3a92a7 use sequ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 532
diff changeset
107 (x : sequ a b f g) → (Sets [ f o (λ e → equ e) ]) x ≡ (Sets [ g o (λ e → equ e) ]) x
c3dcea3a92a7 use sequ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 532
diff changeset
108 fe=ge0 (elem x eq ) = eq
c3dcea3a92a7 use sequ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 532
diff changeset
109
541
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 540
diff changeset
110 irr : { c₂ : Level} {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≡ eq'
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 540
diff changeset
111 irr refl refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 540
diff changeset
112
555
91d065bcfdc0 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 554
diff changeset
113 elm-cong : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → (x y : sequ a b f g) → equ x ≡ equ y → x ≡ y
91d065bcfdc0 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 554
diff changeset
114 elm-cong ( elem x eq ) (elem .x eq' ) refl = ≡cong ( λ ee → elem x ee ) ( irr eq eq' )
91d065bcfdc0 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 554
diff changeset
115
563
8b18361e6ca9 try id equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 562
diff changeset
116 fe=ge : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b}
8b18361e6ca9 try id equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 562
diff changeset
117 → Sets [ Sets [ f o (λ e → equ {_} {a} {b} {f} {g} e ) ] ≈ Sets [ g o (λ e → equ e ) ] ]
558
c2eb1a2570ce on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 557
diff changeset
118 fe=ge = extensionality Sets (fe=ge0 )
c2eb1a2570ce on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 557
diff changeset
119 k : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → {d : Obj Sets} (h : Hom Sets d a)
c2eb1a2570ce on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 557
diff changeset
120 → Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] → Hom Sets d (sequ a b f g)
573
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 572
diff changeset
121 k {_} {_} {_} {_} {_} {d} h eq = λ x → elem (h x) ( ≈-to-≡ eq x )
563
8b18361e6ca9 try id equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 562
diff changeset
122 ek=h : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ {_} {a} {b} {f} {g} e ) o k h eq ] ≈ h ]
558
c2eb1a2570ce on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 557
diff changeset
123 ek=h {_} {_} {_} {_} {_} {d} {h} {eq} = refl
c2eb1a2570ce on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 557
diff changeset
124
510
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
125 open sequ
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
126
532
d5d7163f2a1d equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 531
diff changeset
127 -- equalizer-c = sequ a b f g
d5d7163f2a1d equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 531
diff changeset
128 -- ; equalizer = λ e → equ e
d5d7163f2a1d equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 531
diff changeset
129
d5d7163f2a1d equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 531
diff changeset
130 SetsIsEqualizer : { c₂ : Level} → (a b : Obj (Sets {c₂}) ) (f g : Hom (Sets {c₂}) a b) → IsEqualizer Sets (λ e → equ e )f g
d5d7163f2a1d equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 531
diff changeset
131 SetsIsEqualizer {c₂} a b f g = record {
560
ba9c6dbbe6cb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 559
diff changeset
132 fe=ge = fe=ge { c₂ } {a} {b} {f} {g}
ba9c6dbbe6cb on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 559
diff changeset
133 ; k = λ {d} h eq → k { c₂ } {a} {b} {f} {g} {d} h eq
558
c2eb1a2570ce on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 557
diff changeset
134 ; ek=h = λ {d} {h} {eq} → ek=h {c₂} {a} {b} {f} {g} {d} {h} {eq}
510
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
135 ; uniqueness = uniqueness
5eb4b69bf541 equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 509
diff changeset
136 } where
523
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 522
diff changeset
137 injection : { c₂ : Level } {a b : Obj (Sets { c₂})} (f : Hom Sets a b) → Set c₂
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 522
diff changeset
138 injection f = ∀ x y → f x ≡ f y → x ≡ y
522
8fd030f9f572 Equalizer in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 521
diff changeset
139 lemma5 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} →
563
8b18361e6ca9 try id equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 562
diff changeset
140 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ {_} {a} {b} {f} {g} (k h fh=gh x) ≡ equ (k' x)
573
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 572
diff changeset
141 lemma5 refl x = refl -- somehow this is not equal to ≈-to-≡
512
f19dab948e39 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 511
diff changeset
142 uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} →
f19dab948e39 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 511
diff changeset
143 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ]
525
cb35d6b25559 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 524
diff changeset
144 uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ ( x : d ) → begin
cb35d6b25559 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 524
diff changeset
145 k h fh=gh x
cb35d6b25559 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 524
diff changeset
146 ≡⟨ elm-cong ( k h fh=gh x) ( k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x ) ⟩
cb35d6b25559 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 524
diff changeset
147 k' x
cb35d6b25559 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 524
diff changeset
148 ∎ ) where
cb35d6b25559 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 524
diff changeset
149 open import Relation.Binary.PropositionalEquality
cb35d6b25559 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 524
diff changeset
150 open ≡-Reasoning
cb35d6b25559 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 524
diff changeset
151
500
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
152
501
61daa68a70c4 Sets completeness failed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 500
diff changeset
153 open Functor
500
6c993c1fe9de try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
154
538
d22c93dca806 locally small
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 537
diff changeset
155 ----
d22c93dca806 locally small
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 537
diff changeset
156 -- C is locally small i.e. Hom C i j is a set c₁
d22c93dca806 locally small
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 537
diff changeset
157 --
526
b035cd3be525 Small Category for Sets Limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 525
diff changeset
158 record Small { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ )
b035cd3be525 Small Category for Sets Limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 525
diff changeset
159 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
507
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 506
diff changeset
160 field
552
09b1f66f7d7c equalizer approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 551
diff changeset
161 hom→ : {i j : Obj C } → Hom C i j → I → I
09b1f66f7d7c equalizer approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 551
diff changeset
162 hom← : {i j : Obj C } → ( f : I → I ) → Hom C i j
540
2373c11a93f1 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 539
diff changeset
163 hom-iso : {i j : Obj C } → { f : Hom C i j } → hom← ( hom→ f ) ≡ f
536
09beac05a0fb add iso1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 535
diff changeset
164 -- ≈-≡ : {a b : Obj C } { x y : Hom C a b } → (x≈y : C [ x ≈ y ] ) → x ≡ y
507
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 506
diff changeset
165
526
b035cd3be525 Small Category for Sets Limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 525
diff changeset
166 open Small
507
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 506
diff changeset
167
526
b035cd3be525 Small Category for Sets Limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 525
diff changeset
168 ΓObj : { c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I : Set c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))
538
d22c93dca806 locally small
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 537
diff changeset
169 (i : Obj C ) →  Set c₁
d22c93dca806 locally small
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 537
diff changeset
170 ΓObj s Γ i = FObj Γ i
507
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 506
diff changeset
171
526
b035cd3be525 Small Category for Sets Limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 525
diff changeset
172 ΓMap : { c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I : Set c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))
552
09b1f66f7d7c equalizer approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 551
diff changeset
173 {i j : Obj C } →  ( f : I → I ) → ΓObj s Γ i → ΓObj s Γ j
540
2373c11a93f1 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 539
diff changeset
174 ΓMap s Γ {i} {j} f = FMap Γ ( hom← s f )
526
b035cd3be525 Small Category for Sets Limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 525
diff changeset
175
591
9676a75c3010 slid rewrite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 590
diff changeset
176 slid : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) → (x : Obj C) → I → I
9676a75c3010 slid rewrite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 590
diff changeset
177 slid C I s x = hom→ s ( id1 C x )
507
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 506
diff changeset
178
583
cd65d5c9a54d anothter approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 580
diff changeset
179 record slim { c₂ } { I OC : Set c₂ }
cd65d5c9a54d anothter approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 580
diff changeset
180 ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I → I ) → sobj i → sobj j )
558
c2eb1a2570ce on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 557
diff changeset
181 : Set c₂ where
c2eb1a2570ce on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 557
diff changeset
182 field
593
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
183 slproj : ( i : OC ) → sobj i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
184 slequ : (i j : OC) (f : I → I ) → sequ OC (sobj j) (λ x → smap f (slproj i) ) (λ x → slproj j )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
185 slprod : sproduct OC sobj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
186 slprod = record { proj = slproj }
590
2c5d8c3c9086 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
187 slmap : { i j : OC } → (f : I → I ) → sobj i → sobj j
2c5d8c3c9086 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
188 slmap f x = smap f x
591
9676a75c3010 slid rewrite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 590
diff changeset
189 open slim
558
c2eb1a2570ce on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 557
diff changeset
190
530
89af55191ec6 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 529
diff changeset
191 open import HomReasoning
89af55191ec6 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 529
diff changeset
192 open NTrans
569
25c18786fbdc lemma-equ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 568
diff changeset
193
590
2c5d8c3c9086 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
194
593
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
195 Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
196 → NTrans C Sets (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ) )) Γ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
197 Cone {c₁} C I s Γ = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
198 TMap = λ i → λ se → proj ( slprod se ) i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
199 ; isNTrans = record { commute = commute1 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
200 } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
201 commute1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → proj (slprod se) a) ] ≈
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
202 Sets [ (λ se → proj (slprod se) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ] ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
203 commute1 {a} {b} {f} = extensionality Sets ( λ se → begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
204 FMap Γ f (proj (slprod se ) a )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
205 ≡⟨ ≡cong ( λ g → FMap Γ g (proj (slprod se) a)) (sym ( hom-iso s ) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
206 FMap Γ (hom← s ( hom→ s f)) (proj (slprod se) a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
207 ≡⟨ fe=ge0 (slequ se a b ( hom→ s f) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
208 proj (slprod se) b
592
0448a74c0a03 on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 591
diff changeset
209 ∎ ) where
0448a74c0a03 on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 591
diff changeset
210 open import Relation.Binary.PropositionalEquality
0448a74c0a03 on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 591
diff changeset
211 open ≡-Reasoning
0448a74c0a03 on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 591
diff changeset
212
585
59c3de1c4043 on oging ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 584
diff changeset
213 SetsLimit : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) )
59c3de1c4043 on oging ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 584
diff changeset
214 → Limit Sets C Γ
59c3de1c4043 on oging ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 584
diff changeset
215 SetsLimit { c₂} C I s Γ = record {
59c3de1c4043 on oging ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 584
diff changeset
216 a0 = slim (ΓObj s Γ) (ΓMap s Γ)
587
d3bea3ac919e on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 586
diff changeset
217 ; t0 = Cone C I s Γ
585
59c3de1c4043 on oging ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 584
diff changeset
218 ; isLimit = record {
59c3de1c4043 on oging ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 584
diff changeset
219 limit = limit1
593
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
220 ; t0f=t = λ {a t i } → refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
221 ; limit-uniqueness = λ {a t f } → limit-uniqueness {a} {t} {f}
585
59c3de1c4043 on oging ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 584
diff changeset
222 }
59c3de1c4043 on oging ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 584
diff changeset
223 } where
59c3de1c4043 on oging ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 584
diff changeset
224 limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ))
593
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
225 limit1 a t = λ x → record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
226 slequ = λ i j f → elem {!!} ( ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
227 ; slproj = λ i → ( TMap t i ) x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
228 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
229 limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ))} → ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
230 limit-uniqueness {a} {t} {f} cif=t = extensionality Sets ( λ x → begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
231 limit1 a t x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
232 ≡⟨ {!!} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
233 f x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
234 ∎ ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
235 open import Relation.Binary.PropositionalEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
236 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
238
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
239
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
240
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
243
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 592
diff changeset
244