Mercurial > hg > Members > kono > Proof > galois
annotate Putil.agda @ 85:2d79a2c06c6c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Aug 2020 01:19:32 +0900 |
parents | 59aaf2000591 |
children | c5329963c583 |
rev | line source |
---|---|
48 | 1 module Putil where |
0 | 2 |
3 open import Level hiding ( suc ; zero ) | |
4 open import Algebra | |
5 open import Algebra.Structures | |
37 | 6 open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ) |
41 | 7 open import Data.Fin.Properties hiding ( <-trans ; ≤-trans ) renaming ( <-cmp to <-fcmp ) |
0 | 8 open import Data.Fin.Permutation |
9 open import Function hiding (id ; flip) | |
10 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) | |
11 open import Function.LeftInverse using ( _LeftInverseOf_ ) | |
12 open import Function.Equality using (Π) | |
17 | 13 open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) |
14 open import Data.Nat.Properties -- using (<-trans) | |
16 | 15 open import Relation.Binary.PropositionalEquality |
80 | 16 open import Data.List using (List; []; _∷_ ; length ; _++_ ; head ; tail ) renaming (reverse to rev ) |
16 | 17 open import nat |
0 | 18 |
48 | 19 open import Symmetric |
0 | 20 |
21 | |
16 | 22 open import Relation.Nullary |
23 open import Data.Empty | |
17 | 24 open import Relation.Binary.Core |
80 | 25 open import Relation.Binary.Definitions |
17 | 26 open import fin |
16 | 27 |
38 | 28 -- An inductive construction of permutation |
34 | 29 |
59 | 30 -- Todo |
31 -- | |
32 -- complete perm→FL | |
33 -- describe property of pprep and pswap | |
34 -- describe property of pins ( move 0 to any position) | |
35 -- describe property of shrink ( remove one column ) | |
36 -- prove FL→iso | |
37 -- prove FL←iso | |
38 -- prove FL enumerate all permutations | |
39 | |
48 | 40 -- we already have refl and trans in the Symmetric Group |
41 | 41 |
34 | 42 pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n) |
43 pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where | |
33 | 44 p→ : Fin (suc n) → Fin (suc n) |
34 | 45 p→ zero = zero |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
46 p→ (suc x) = suc ( perm ⟨$⟩ʳ x) |
33 | 47 |
34 | 48 p← : Fin (suc n) → Fin (suc n) |
49 p← zero = zero | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
50 p← (suc x) = suc ( perm ⟨$⟩ˡ x) |
34 | 51 |
52 piso← : (x : Fin (suc n)) → p→ ( p← x ) ≡ x | |
53 piso← zero = refl | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
54 piso← (suc x) = cong (λ k → suc k ) (inverseʳ perm) |
33 | 55 |
34 | 56 piso→ : (x : Fin (suc n)) → p← ( p→ x ) ≡ x |
57 piso→ zero = refl | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
58 piso→ (suc x) = cong (λ k → suc k ) (inverseˡ perm) |
33 | 59 |
34 | 60 pswap : {n : ℕ } → Permutation n n → Permutation (suc (suc n)) (suc (suc n )) |
61 pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where | |
62 p→ : Fin (suc (suc n)) → Fin (suc (suc n)) | |
63 p→ zero = suc zero | |
64 p→ (suc zero) = zero | |
62 | 65 p→ (suc (suc x)) = suc ( suc ( perm ⟨$⟩ʳ x) ) |
18 | 66 |
34 | 67 p← : Fin (suc (suc n)) → Fin (suc (suc n)) |
68 p← zero = suc zero | |
69 p← (suc zero) = zero | |
62 | 70 p← (suc (suc x)) = suc ( suc ( perm ⟨$⟩ˡ x) ) |
34 | 71 |
72 piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x | |
73 piso← zero = refl | |
74 piso← (suc zero) = refl | |
62 | 75 piso← (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseʳ perm) |
16 | 76 |
34 | 77 piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x |
78 piso→ zero = refl | |
79 piso→ (suc zero) = refl | |
62 | 80 piso→ (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseˡ perm) |
34 | 81 |
82 -- enumeration | |
83 | |
44 | 84 psawpn : {n : ℕ} → 1 < n → Permutation n n |
85 psawpn {suc zero} (s≤s ()) | |
86 psawpn {suc n} (s≤s (s≤s x)) = pswap pid | |
34 | 87 |
35 | 88 pfill : { n m : ℕ } → m ≤ n → Permutation m m → Permutation n n |
89 pfill {n} {m} m≤n perm = pfill1 (n - m) (n-m<n n m ) (subst (λ k → Permutation k k ) (n-n-m=m m≤n ) perm) where | |
90 pfill1 : (i : ℕ ) → i ≤ n → Permutation (n - i) (n - i) → Permutation n n | |
91 pfill1 0 _ perm = perm | |
92 pfill1 (suc i) i<n perm = pfill1 i (≤to< i<n) (subst (λ k → Permutation k k ) (si-sn=i-n i<n ) ( pprep perm ) ) | |
34 | 93 |
48 | 94 -- |
95 -- psawpim (inseert swap at position m ) | |
96 -- | |
45 | 97 psawpim : {n m : ℕ} → suc (suc m) ≤ n → Permutation n n |
98 psawpim {n} {m} m≤n = pfill m≤n ( psawpn (s≤s (s≤s z≤n)) ) | |
99 | |
100 n≤ : (i : ℕ ) → {j : ℕ } → i ≤ i + j | |
101 n≤ (zero) {j} = z≤n | |
102 n≤ (suc i) {j} = s≤s ( n≤ i ) | |
103 | |
104 lem0 : {n : ℕ } → n ≤ n | |
105 lem0 {zero} = z≤n | |
106 lem0 {suc n} = s≤s lem0 | |
107 | |
108 lem00 : {n m : ℕ } → n ≡ m → n ≤ m | |
109 lem00 refl = lem0 | |
44 | 110 |
111 -- pconcat : {n m : ℕ } → Permutation m m → Permutation n n → Permutation (m + n) (m + n) | |
112 -- pconcat {n} {m} p q = pfill {n + m} {m} ? p ∘ₚ ? | |
113 | |
114 -- inductivley enmumerate permutations | |
115 -- from n-1 length create n length inserting new element at position m | |
116 | |
48 | 117 -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] |
118 -- 1 ∷ 0 ∷ 2 ∷ 3 ∷ [] plist ( pins {3} (n≤ 1) ) | |
119 -- 1 ∷ 2 ∷ 0 ∷ 3 ∷ [] | |
120 -- 1 ∷ 2 ∷ 3 ∷ 0 ∷ [] | |
45 | 121 |
48 | 122 pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) |
123 pins {_} {zero} _ = pid | |
124 pins {suc _} {suc zero} _ = pswap pid | |
125 pins {suc (suc n)} {suc m} (s≤s m<n) = pins1 (suc m) (suc (suc n)) lem0 where | |
126 pins1 : (i j : ℕ ) → j ≤ suc (suc n) → Permutation (suc (suc (suc n ))) (suc (suc (suc n))) | |
127 pins1 _ zero _ = pid | |
128 pins1 zero _ _ = pid | |
129 pins1 (suc i) (suc j) (s≤s si≤n) = psawpim {suc (suc (suc n))} {j} (s≤s (s≤s si≤n)) ∘ₚ pins1 i j (≤-trans si≤n refl-≤s ) | |
37 | 130 |
80 | 131 plist1 : {n : ℕ} → Permutation (suc n) (suc n) → (i : ℕ ) → i < suc n → List ℕ |
132 plist1 {n} perm zero _ = toℕ ( perm ⟨$⟩ˡ (fromℕ< {zero} (s≤s z≤n))) ∷ [] | |
133 plist1 {n} perm (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ< (s≤s lt))) ∷ plist1 perm i (<-trans lt a<sa) | |
134 | |
37 | 135 plist : {n : ℕ} → Permutation n n → List ℕ |
136 plist {0} perm = [] | |
80 | 137 plist {suc n} perm = rev (plist1 perm n a<sa) |
138 | |
139 plist2 : {n : ℕ} → Permutation (suc n) (suc n) → (i : ℕ ) → i < suc n → List ℕ | |
140 plist2 {n} perm zero _ = toℕ ( perm ⟨$⟩ʳ (fromℕ< {zero} (s≤s z≤n))) ∷ [] | |
141 plist2 {n} perm (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ʳ (fromℕ< (s≤s lt))) ∷ plist2 perm i (<-trans lt a<sa) | |
142 | |
143 plist0 : {n : ℕ} → Permutation n n → List ℕ | |
144 plist0 {0} perm = [] | |
145 plist0 {suc n} perm = plist2 perm n a<sa | |
146 | |
85 | 147 open _=p=_ |
148 | |
149 ←pleq : {n : ℕ} → (x y : Permutation n n ) → x =p= y → plist0 x ≡ plist0 y | |
150 ←pleq {zero} x y eq = refl | |
151 ←pleq {suc n} x y eq = ←pleq1 n a<sa where | |
152 ←pleq1 : (i : ℕ ) → (i<sn : i < suc n ) → plist2 x i i<sn ≡ plist2 y i i<sn | |
153 ←pleq1 zero _ = cong ( λ k → toℕ k ∷ [] ) ( peq eq (fromℕ< {zero} (s≤s z≤n))) | |
154 ←pleq1 (suc i) (s≤s lt) = cong₂ ( λ j k → toℕ j ∷ k ) ( peq eq (fromℕ< (s≤s lt))) ( ←pleq1 i (<-trans lt a<sa) ) | |
80 | 155 |
156 headeq : {A : Set } → {x y : A } → {xt yt : List A } → (x ∷ xt) ≡ (y ∷ yt) → x ≡ y | |
157 headeq refl = refl | |
158 | |
159 taileq : {A : Set } → {x y : A } → {xt yt : List A } → (x ∷ xt) ≡ (y ∷ yt) → xt ≡ yt | |
160 taileq refl = refl | |
161 | |
162 pleq : {n : ℕ} → (x y : Permutation n n ) → plist0 x ≡ plist0 y → x =p= y | |
163 pleq {0} x y refl = record { peq = λ q → pleq0 q } where | |
164 pleq0 : (q : Fin 0 ) → (x ⟨$⟩ʳ q) ≡ (y ⟨$⟩ʳ q) | |
165 pleq0 () | |
166 pleq {suc n} x y eq = record { peq = λ q → pleq1 n a<sa eq q fin<n } where | |
167 pleq1 : (i : ℕ ) → (i<sn : i < suc n ) → plist2 x i i<sn ≡ plist2 y i i<sn → (q : Fin (suc n)) → toℕ q < suc i → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q | |
81 | 168 pleq1 zero i<sn eq q q<i with <-cmp (toℕ q) zero |
169 ... | tri< () ¬b ¬c | |
170 ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c q<i ) | |
171 ... | tri≈ ¬a b ¬c = begin | |
172 x ⟨$⟩ʳ q | |
173 ≡⟨ cong ( λ k → x ⟨$⟩ʳ k ) (toℕ-injective b )⟩ | |
174 x ⟨$⟩ʳ zero | |
175 ≡⟨ toℕ-injective (headeq eq) ⟩ | |
176 y ⟨$⟩ʳ zero | |
177 ≡⟨ cong ( λ k → y ⟨$⟩ʳ k ) (sym (toℕ-injective b )) ⟩ | |
178 y ⟨$⟩ʳ q | |
179 ∎ where | |
180 open ≡-Reasoning | |
80 | 181 pleq1 (suc i) (s≤s i<sn) eq q q<i with <-cmp (toℕ q) (suc i) |
182 ... | tri< a ¬b ¬c = pleq1 i (<-trans i<sn a<sa ) (taileq eq) q a | |
81 | 183 ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c q<i ) |
80 | 184 ... | tri≈ ¬a b ¬c = begin |
185 x ⟨$⟩ʳ q | |
186 ≡⟨ cong (λ k → x ⟨$⟩ʳ k) (pleq3 b) ⟩ | |
187 x ⟨$⟩ʳ (suc (fromℕ< i<sn)) | |
188 ≡⟨ toℕ-injective pleq2 ⟩ | |
189 y ⟨$⟩ʳ (suc (fromℕ< i<sn)) | |
190 ≡⟨ cong (λ k → y ⟨$⟩ʳ k) (sym (pleq3 b)) ⟩ | |
191 y ⟨$⟩ʳ q | |
192 ∎ where | |
193 open ≡-Reasoning | |
194 pleq3 : toℕ q ≡ suc i → q ≡ suc (fromℕ< i<sn) | |
195 pleq3 tq=si = toℕ-injective ( begin | |
196 toℕ q | |
197 ≡⟨ b ⟩ | |
198 suc i | |
199 ≡⟨ sym (toℕ-fromℕ< (s≤s i<sn)) ⟩ | |
200 toℕ (fromℕ< (s≤s i<sn)) | |
201 ≡⟨⟩ | |
202 toℕ (suc (fromℕ< i<sn)) | |
203 ∎ ) where open ≡-Reasoning | |
204 pleq2 : toℕ ( x ⟨$⟩ʳ (suc (fromℕ< i<sn)) ) ≡ toℕ ( y ⟨$⟩ʳ (suc (fromℕ< i<sn)) ) | |
205 pleq2 = headeq eq | |
37 | 206 |
49
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
207 data FL : (n : ℕ )→ Set where |
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
208 f0 : FL 0 |
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
209 _::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n) |
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
210 |
50 | 211 open import logic |
212 | |
56 | 213 -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] → 0 ∷ 1 ∷ 2 ∷ [] |
61 | 214 shrink : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → perm ⟨$⟩ˡ (# 0) ≡ # 0 → Permutation n n |
215 shrink {n} perm p0=0 = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where | |
216 shlem→ : (x : Fin (suc n) ) → perm ⟨$⟩ˡ x ≡ zero → x ≡ zero | |
217 shlem→ x px=0 = begin | |
218 x ≡⟨ sym ( inverseʳ perm ) ⟩ | |
219 perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ x) ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) px=0 ⟩ | |
220 perm ⟨$⟩ʳ zero ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) (sym p0=0) ⟩ | |
221 perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ zero) ≡⟨ inverseʳ perm ⟩ | |
222 zero | |
223 ∎ where open ≡-Reasoning | |
54 | 224 |
61 | 225 shlem← : (x : Fin (suc n)) → perm ⟨$⟩ʳ x ≡ zero → x ≡ zero |
226 shlem← x px=0 = begin | |
227 x ≡⟨ sym (inverseˡ perm ) ⟩ | |
228 perm ⟨$⟩ˡ ( perm ⟨$⟩ʳ x ) ≡⟨ cong (λ k → perm ⟨$⟩ˡ k ) px=0 ⟩ | |
229 perm ⟨$⟩ˡ zero ≡⟨ p0=0 ⟩ | |
230 zero | |
231 ∎ where open ≡-Reasoning | |
54 | 232 |
61 | 233 sh2 : {x : Fin n} → ¬ perm ⟨$⟩ˡ (suc x) ≡ zero |
234 sh2 {x} eq with shlem→ (suc x) eq | |
235 sh2 {x} eq | () | |
57 | 236 |
61 | 237 p→ : Fin n → Fin n |
238 p→ x with perm ⟨$⟩ˡ (suc x) | inspect (_⟨$⟩ˡ_ perm ) (suc x) | |
239 p→ x | zero | record { eq = e } = ⊥-elim ( sh2 {x} e ) | |
240 p→ x | suc t | _ = t | |
50 | 241 |
61 | 242 sh1 : {x : Fin n} → ¬ perm ⟨$⟩ʳ (suc x) ≡ zero |
243 sh1 {x} eq with shlem← (suc x) eq | |
244 sh1 {x} eq | () | |
50 | 245 |
246 p← : Fin n → Fin n | |
61 | 247 p← x with perm ⟨$⟩ʳ (suc x) | inspect (_⟨$⟩ʳ_ perm ) (suc x) |
248 p← x | zero | record { eq = e } = ⊥-elim ( sh1 {x} e ) | |
249 p← x | suc t | _ = t | |
50 | 250 |
251 piso← : (x : Fin n ) → p→ ( p← x ) ≡ x | |
61 | 252 piso← x with perm ⟨$⟩ʳ (suc x) | inspect (_⟨$⟩ʳ_ perm ) (suc x) |
253 piso← x | zero | record { eq = e } = ⊥-elim ( sh1 {x} e ) | |
254 piso← x | suc t | _ with perm ⟨$⟩ˡ (suc t) | inspect (_⟨$⟩ˡ_ perm ) (suc t) | |
255 piso← x | suc t | _ | zero | record { eq = e } = ⊥-elim ( sh2 e ) | |
256 piso← x | suc t | record { eq = e0 } | suc t1 | record { eq = e1 } = begin | |
257 t1 | |
258 ≡⟨ plem0 plem1 ⟩ | |
52 | 259 x |
61 | 260 ∎ where |
261 open ≡-Reasoning | |
262 plem0 : suc t1 ≡ suc x → t1 ≡ x | |
263 plem0 refl = refl | |
264 plem1 : suc t1 ≡ suc x | |
265 plem1 = begin | |
266 suc t1 | |
267 ≡⟨ sym e1 ⟩ | |
268 Inverse.from perm Π.⟨$⟩ suc t | |
269 ≡⟨ cong (λ k → Inverse.from perm Π.⟨$⟩ k ) (sym e0 ) ⟩ | |
270 Inverse.from perm Π.⟨$⟩ ( Inverse.to perm Π.⟨$⟩ suc x ) | |
271 ≡⟨ inverseˡ perm ⟩ | |
272 suc x | |
273 ∎ | |
50 | 274 |
275 piso→ : (x : Fin n ) → p← ( p→ x ) ≡ x | |
61 | 276 piso→ x with perm ⟨$⟩ˡ (suc x) | inspect (_⟨$⟩ˡ_ perm ) (suc x) |
277 piso→ x | zero | record { eq = e } = ⊥-elim ( sh2 {x} e ) | |
278 piso→ x | suc t | _ with perm ⟨$⟩ʳ (suc t) | inspect (_⟨$⟩ʳ_ perm ) (suc t) | |
279 piso→ x | suc t | _ | zero | record { eq = e } = ⊥-elim ( sh1 e ) | |
280 piso→ x | suc t | record { eq = e0 } | suc t1 | record { eq = e1 } = begin | |
281 t1 | |
282 ≡⟨ plem2 plem3 ⟩ | |
53 | 283 x |
61 | 284 ∎ where |
285 open ≡-Reasoning | |
286 plem2 : suc t1 ≡ suc x → t1 ≡ x | |
287 plem2 refl = refl | |
288 plem3 : suc t1 ≡ suc x | |
289 plem3 = begin | |
290 suc t1 | |
291 ≡⟨ sym e1 ⟩ | |
292 Inverse.to perm Π.⟨$⟩ suc t | |
293 ≡⟨ cong (λ k → Inverse.to perm Π.⟨$⟩ k ) (sym e0 ) ⟩ | |
294 Inverse.to perm Π.⟨$⟩ ( Inverse.from perm Π.⟨$⟩ suc x ) | |
295 ≡⟨ inverseʳ perm ⟩ | |
296 suc x | |
297 ∎ | |
57 | 298 |
299 FL→perm : {n : ℕ } → FL n → Permutation n n | |
300 FL→perm f0 = pid | |
301 FL→perm (x :: fl) = pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x ) | |
302 | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
303 t40 = (# 2) :: ( (# 1) :: (( # 0 ) :: f0 )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
304 t4 = FL→perm ((# 2) :: t40 ) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
305 |
61 | 306 -- t1 = plist (shrink (pid {3} ∘ₚ (pins (n≤ 1))) refl) |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
307 t2 = plist ((pid {5} ) ∘ₚ transpose (# 2) (# 4)) ∷ plist (pid {5} ∘ₚ reverse ) ∷ [] |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
308 t3 = plist (FL→perm t40) -- ∷ plist (pprep (FL→perm t40)) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
309 -- ∷ plist ( pprep (FL→perm t40) ∘ₚ pins ( n≤ 0 {3} )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
310 -- ∷ plist ( pprep (FL→perm t40 )∘ₚ pins ( n≤ 1 {2} )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
311 -- ∷ plist ( pprep (FL→perm t40 )∘ₚ pins ( n≤ 2 {1} )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
312 -- ∷ plist ( pprep (FL→perm t40 )∘ₚ pins ( n≤ 3 {0} )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
313 ∷ plist ( FL→perm ((# 0) :: t40)) -- (0 ∷ 1 ∷ 2 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
314 ∷ plist ( FL→perm ((# 1) :: t40)) -- (0 ∷ 2 ∷ 1 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
315 ∷ plist ( FL→perm ((# 2) :: t40)) -- (1 ∷ 0 ∷ 2 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
316 ∷ plist ( FL→perm ((# 3) :: t40)) -- (2 ∷ 0 ∷ 1 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
317 -- ∷ plist ( FL→perm ((# 3) :: ((# 2) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) -- (1 ∷ 2 ∷ 0 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
318 -- ∷ plist ( FL→perm ((# 3) :: ((# 2) :: ( (# 1) :: (( # 0 ) :: f0 )) ))) -- (2 ∷ 1 ∷ 0 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
319 -- ∷ plist ( (flip (FL→perm ((# 3) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))))) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
320 -- ∷ plist ( (flip (FL→perm ((# 3) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) ∘ₚ (FL→perm ((# 3) :: (((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) )))) )) |
57 | 321 ∷ [] |
50 | 322 |
64 | 323 -- postulate |
324 -- p=0 : {n : ℕ } → (perm : Permutation (suc n) (suc n) ) → ((perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) ⟨$⟩ˡ (# 0)) ≡ # 0 | |
58 | 325 |
49
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
326 perm→FL : {n : ℕ } → Permutation n n → FL n |
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
327 perm→FL {zero} perm = f0 |
64 | 328 perm→FL {suc n} perm = (perm ⟨$⟩ʳ (# 0)) :: perm→FL (remove (# 0) perm) |
329 -- perm→FL {suc n} perm = (perm ⟨$⟩ʳ (# 0)) :: perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ) | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
330 |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
331 -- t5 = plist t4 ∷ plist ( t4 ∘ₚ flip (pins ( n≤ 3 ) )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
332 t5 = plist (t4) ∷ plist (flip t4) |
74 | 333 ∷ ( toℕ (t4 ⟨$⟩ˡ fromℕ< a<sa) ∷ [] ) |
61 | 334 ∷ ( toℕ (t4 ⟨$⟩ʳ (# 0)) ∷ [] ) |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
335 -- ∷ plist ( t4 ∘ₚ flip (pins ( n≤ 1 ) )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
336 ∷ plist (remove (# 0) t4 ) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
337 ∷ plist ( FL→perm t40 ) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
338 ∷ [] |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
339 |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
340 t6 = perm→FL t4 |
49
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
341 |
63 | 342 postulate |
343 FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl | |
344 -- FL→iso f0 = refl | |
345 -- FL→iso (x :: fl) = {!!} -- with FL→iso fl | |
61 | 346 -- ... | t = {!!} |
49
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
347 |
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
348 open _=p=_ |
63 | 349 postulate |
350 FL←iso : {n : ℕ } → (perm : Permutation n n ) → FL→perm ( perm→FL perm ) =p= perm | |
351 -- FL←iso {0} perm = record { peq = λ () } | |
352 -- FL←iso {suc n} perm = {!!} | |
49
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
353 |
66 | 354 lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n |
355 lem2 i≤n = ≤-trans i≤n ( refl-≤s ) | |
356 | |
67
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
357 ∀-FL : (n : ℕ ) → List (FL (suc n)) |
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
358 ∀-FL x = fls6 x where |
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
359 fls4 : ( i n : ℕ ) → (i<n : i ≤ n ) → FL n → List (FL (suc n)) → List (FL (suc n)) |
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
360 fls4 zero n i≤n perm x = (zero :: perm ) ∷ x |
74 | 361 fls4 (suc i) n i≤n perm x = fls4 i n (≤-trans refl-≤s i≤n ) perm ((fromℕ< (s≤s i≤n) :: perm ) ∷ x) |
67
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
362 fls5 : ( n : ℕ ) → List (FL n) → List (FL (suc n)) → List (FL (suc n)) |
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
363 fls5 n [] x = x |
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
364 fls5 n (h ∷ x) y = fls5 n x (fls4 n n lem0 h y) |
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
365 fls6 : ( n : ℕ ) → List (FL (suc n)) |
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
366 fls6 zero = (zero :: f0) ∷ [] |
3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
66
diff
changeset
|
367 fls6 (suc n) = fls5 (suc n) (fls6 n) [] |
65 | 368 |
48 | 369 all-perm : (n : ℕ ) → List (Permutation (suc n) (suc n) ) |
370 all-perm n = pls6 n where | |
38 | 371 lem1 : {i n : ℕ } → i ≤ n → i < suc n |
372 lem1 z≤n = s≤s z≤n | |
373 lem1 (s≤s lt) = s≤s (lem1 lt) | |
40 | 374 pls4 : ( i n : ℕ ) → (i<n : i ≤ n ) → Permutation n n → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) |
48 | 375 pls4 zero n i≤n perm x = (pprep perm ∘ₚ pins i≤n ) ∷ x |
376 pls4 (suc i) n i≤n perm x = pls4 i n (≤-trans refl-≤s i≤n ) perm (pprep perm ∘ₚ pins {n} {suc i} i≤n ∷ x) | |
40 | 377 pls5 : ( n : ℕ ) → List (Permutation n n) → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) |
378 pls5 n [] x = x | |
379 pls5 n (h ∷ x) y = pls5 n x (pls4 n n lem0 h y) | |
380 pls6 : ( n : ℕ ) → List (Permutation (suc n) (suc n)) | |
381 pls6 zero = pid ∷ [] | |
48 | 382 pls6 (suc n) = pls5 (suc n) (rev (pls6 n) ) [] -- rev to put id first |
383 | |
384 pls : (n : ℕ ) → List (List ℕ ) | |
75 | 385 pls n = Data.List.map plist (all-perm n) |