annotate cardinal.agda @ 305:4804f3f3485f

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 29 Jun 2020 18:37:31 +0900
parents d9d3654baee1
children 12071f79f3cf
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 15
diff changeset
1 open import Level
224
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
2 open import Ordinals
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
3 module cardinal {n : Level } (O : Ordinals {n}) where
3
e7990ff544bf reocrd ZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4
14
e11e95d5ddee separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 11
diff changeset
5 open import zf
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
6 open import logic
224
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
7 import OD
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
8 import ODC
274
29a85a427ed2 ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 272
diff changeset
9 import OPair
23
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 22
diff changeset
10 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
224
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
11 open import Relation.Binary.PropositionalEquality
14
e11e95d5ddee separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 11
diff changeset
12 open import Data.Nat.Properties
6
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
13 open import Data.Empty
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
14 open import Relation.Nullary
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
15 open import Relation.Binary
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
16 open import Relation.Binary.Core
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
17
224
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
18 open inOrdinal O
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
19 open OD O
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
20 open OD.OD
274
29a85a427ed2 ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 272
diff changeset
21 open OPair O
277
d9d3654baee1 seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 276
diff changeset
22 open ODAxiom odAxiom
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
23
120
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
24 open _∧_
213
22d435172d1a separate logic and nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 210
diff changeset
25 open _∨_
22d435172d1a separate logic and nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 210
diff changeset
26 open Bool
254
2ea2a19f9cd6 ordered pair clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
27 open _==_
44
fcac01485f32 od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 43
diff changeset
28
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
29 -- we have to work on Ordinal to keep OD Level n
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
30 -- since we use p∨¬p which works only on Level n
250
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 249
diff changeset
31
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 249
diff changeset
32
234
e06b76e5b682 ac from LEM in abstract ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 233
diff changeset
33 ∋-p : (A x : OD ) → Dec ( A ∋ x )
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
34 ∋-p A x with ODC.p∨¬p O ( A ∋ x )
234
e06b76e5b682 ac from LEM in abstract ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 233
diff changeset
35 ∋-p A x | case1 t = yes t
e06b76e5b682 ac from LEM in abstract ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 233
diff changeset
36 ∋-p A x | case2 t = no t
e06b76e5b682 ac from LEM in abstract ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 233
diff changeset
37
233
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
38 _⊗_ : (A B : OD) → OD
239
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 238
diff changeset
39 A ⊗ B = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkAB p ) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 238
diff changeset
40 checkAB : { p : Ordinal } → def ZFProduct p → Set n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 238
diff changeset
41 checkAB (pair x y) = def A x ∧ def B y
233
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
42
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
43 func→od0 : (f : Ordinal → Ordinal ) → OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
44 func→od0 f = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkfunc p ) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
45 checkfunc : { p : Ordinal } → def ZFProduct p → Set n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
46 checkfunc (pair x y) = f x ≡ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
47
233
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
48 -- Power (Power ( A ∪ B )) ∋ ( A ⊗ B )
225
5f48299929ac does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
49
233
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
50 Func : ( A B : OD ) → OD
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
51 Func A B = record { def = λ x → def (Power (A ⊗ B)) x }
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
52
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
53 -- power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x)
226
176ff97547b4 set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 225
diff changeset
54
233
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
55 func→od : (f : Ordinal → Ordinal ) → ( dom : OD ) → OD
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
56 func→od f dom = Replace dom ( λ x → < x , ord→od (f (od→ord x)) > )
af60c40298a4 function continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 230
diff changeset
57
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
58 record Func←cd { dom cod : OD } {f : Ordinal } : Set n where
236
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 235
diff changeset
59 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 235
diff changeset
60 func-1 : Ordinal → Ordinal
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
61 func→od∈Func-1 : Func dom cod ∋ func→od func-1 dom
236
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 235
diff changeset
62
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
63 od→func : { dom cod : OD } → {f : Ordinal } → def (Func dom cod ) f → Func←cd {dom} {cod} {f}
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
64 od→func {dom} {cod} {f} lt = record { func-1 = λ x → sup-o ( λ y → lemma x {!!} ) ; func→od∈Func-1 = record { proj1 = {!!} ; proj2 = {!!} } } where
236
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 235
diff changeset
65 lemma : Ordinal → Ordinal → Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 235
diff changeset
66 lemma x y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 235
diff changeset
67 lemma x y | p | no n = o∅
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
68 lemma x y | p | yes f∋y = lemma2 (proj1 (ODC.double-neg-eilm O ( p {ord→od y} f∋y ))) where -- p : {y : OD} → f ∋ y → ¬ ¬ (dom ⊗ cod ∋ y)
240
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 239
diff changeset
69 lemma2 : {p : Ordinal} → ord-pair p → Ordinal
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
70 lemma2 (pair x1 y1) with ODC.decp O ( x1 ≡ x)
240
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 239
diff changeset
71 lemma2 (pair x1 y1) | yes p = y1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 239
diff changeset
72 lemma2 (pair x1 y1) | no ¬p = o∅
242
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 241
diff changeset
73 fod : OD
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
74 fod = Replace dom ( λ x → < x , ord→od (sup-o ( λ y → lemma (od→ord x) {!!} )) > )
240
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 239
diff changeset
75
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 239
diff changeset
76
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 239
diff changeset
77 open Func←cd
236
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 235
diff changeset
78
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 226
diff changeset
79 -- contra position of sup-o<
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 226
diff changeset
80 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 226
diff changeset
81
235
846e0926bb89 fix cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
82 -- postulate
846e0926bb89 fix cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
83 -- -- contra-position of mimimulity of supermum required in Cardinal
846e0926bb89 fix cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
84 -- sup-x : ( Ordinal → Ordinal ) → Ordinal
846e0926bb89 fix cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 234
diff changeset
85 -- sup-lb : { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ))
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 226
diff changeset
86
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
87 ------------
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
88 --
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
89 -- Onto map
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
90 -- def X x -> xmap
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
91 -- X ---------------------------> Y
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
92 -- ymap <- def Y y
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
93 --
224
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
94 record Onto (X Y : OD ) : Set n where
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
95 field
226
176ff97547b4 set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 225
diff changeset
96 xmap : Ordinal
176ff97547b4 set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 225
diff changeset
97 ymap : Ordinal
176ff97547b4 set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 225
diff changeset
98 xfunc : def (Func X Y) xmap
176ff97547b4 set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 225
diff changeset
99 yfunc : def (Func Y X) ymap
234
e06b76e5b682 ac from LEM in abstract ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 233
diff changeset
100 onto-iso : {y : Ordinal } → (lty : def Y y ) →
240
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 239
diff changeset
101 func-1 ( od→func {X} {Y} {xmap} xfunc ) ( func-1 (od→func yfunc) y ) ≡ y
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
102
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
103 open Onto
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
104
272
985a1af11bce separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 258
diff changeset
105 onto-restrict : {X Y Z : OD} → Onto X Y → Z ⊆ Y → Onto X Z
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
106 onto-restrict {X} {Y} {Z} onto Z⊆Y = record {
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
107 xmap = xmap1
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
108 ; ymap = zmap
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
109 ; xfunc = xfunc1
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
110 ; yfunc = zfunc
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
111 ; onto-iso = onto-iso1
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
112 } where
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
113 xmap1 : Ordinal
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
114 xmap1 = od→ord (Select (ord→od (xmap onto)) {!!} )
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
115 zmap : Ordinal
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
116 zmap = {!!}
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
117 xfunc1 : def (Func X Z) xmap1
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
118 xfunc1 = {!!}
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
119 zfunc : def (Func Z X) zmap
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
120 zfunc = {!!}
240
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 239
diff changeset
121 onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → func-1 (od→func xfunc1 ) (func-1 (od→func zfunc ) z ) ≡ z
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
122 onto-iso1 = {!!}
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
123
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
124
224
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
125 record Cardinal (X : OD ) : Set n where
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
126 field
224
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
127 cardinal : Ordinal
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
128 conto : Onto X (Ord cardinal)
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
129 cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto X (Ord y)
151
b5a337fb7a6d recovering...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
130
224
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
131 cardinal : (X : OD ) → Cardinal X
afc864169325 recover ε-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
132 cardinal X = record {
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
133 cardinal = sup-o ( λ x → proj1 ( cardinal-p {!!}) )
226
176ff97547b4 set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 225
diff changeset
134 ; conto = onto
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
135 ; cmax = cmax
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
136 } where
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
137 cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto X (Ord x) ) )
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
138 cardinal-p x with ODC.p∨¬p O ( Onto X (Ord x) )
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
139 cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True }
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
140 cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False }
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
141 S = sup-o (λ x → proj1 (cardinal-p {!!}))
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
142 lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → Lift (suc n) (y o< (osuc S) → Onto X (Ord y))) →
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
143 Lift (suc n) (x o< (osuc S) → Onto X (Ord x) )
229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 228
diff changeset
144 lemma1 x prev with trio< x (osuc S)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 228
diff changeset
145 lemma1 x prev | tri< a ¬b ¬c with osuc-≡< a
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
146 lemma1 x prev | tri< a ¬b ¬c | case1 x=S = lift ( λ lt → {!!} )
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
147 lemma1 x prev | tri< a ¬b ¬c | case2 x<S = lift ( λ lt → lemma2 ) where
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
148 lemma2 : Onto X (Ord x)
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
149 lemma2 with prev {!!} {!!}
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
150 ... | lift t = t {!!}
229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 228
diff changeset
151 lemma1 x prev | tri≈ ¬a b ¬c = lift ( λ lt → ⊥-elim ( o<¬≡ b lt ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 228
diff changeset
152 lemma1 x prev | tri> ¬a ¬b c = lift ( λ lt → ⊥-elim ( o<> c lt ))
230
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
153 onto : Onto X (Ord S)
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
154 onto with TransFinite {λ x → Lift (suc n) ( x o< osuc S → Onto X (Ord x) ) } lemma1 S
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
155 ... | lift t = t <-osuc
1b1620e2053c we need ordered pair
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 229
diff changeset
156 cmax : (y : Ordinal) → S o< y → ¬ Onto X (Ord y)
229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 228
diff changeset
157 cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {S}
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
158 (sup-o< {λ x → proj1 ( cardinal-p {!!})}{{!!}} ) lemma refl ) where
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
159 lemma : proj1 (cardinal-p y) ≡ y
276
6f10c47e4e7a separate choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
160 lemma with ODC.p∨¬p O ( Onto X (Ord y) )
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
161 lemma | case1 x = refl
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
162 lemma | case2 not = ⊥-elim ( not ontoy )
217
d5668179ee69 cardinal continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 216
diff changeset
163
226
176ff97547b4 set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 225
diff changeset
164
176ff97547b4 set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 225
diff changeset
165 -----
219
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
166 -- All cardinal is ℵ0, since we are working on Countable Ordinal,
43021d2b8756 separate cardinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
167 -- Power ω is larger than ℵ0, so it has no cardinal.
218
eee983e4b402 try func
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 217
diff changeset
168
eee983e4b402 try func
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 217
diff changeset
169
eee983e4b402 try func
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 217
diff changeset
170